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Foreword 

by Historic Environment Scotland 

Water can cause building fabric deterioration and create unhealthy indoor environments 

and, therefore, is a major factor to consider in construction design. Water transport is close-

ly linked to heat transfer. Together, these coupled transport phenomena are the subject of 

hygrothermal physics. 

Heat transfer through the building envelope has received increased attention over the past 

decades. With governmental policies, today, aiming at significantly reducing the greenhouse 

gas emission associated with the use of buildings, the installations of retrofit measures in 

existing buildings is promoted heavily to improve their energy performance. Reducing the 

heat transfer through building envelopes, by improving their thermal resistance and air-

tightness, is one of the strategies targeted. Insulation retrofits, for example, improve the 

thermal resistance of a construction, draught-proofing increases its airtightness. However, 

while these measures improve the envelope’s performance thermally, they also alter its 

moisture performance, due to the couple nature of the transport phenomena involved. 

Thermal improvements, therefore, can create or increase the risks of moisture-related dete-

rioration. To give examples: in unsuitably designed or operated buildings, condensation can 

occur, leading potentially to timber decay, due to rot infestation, or to mould growth, a 

health risk to building occupants. Liquid water in the near-surface layer of a construction 

can result in surface spalling, due to freeze-thaw action; salts transported by liquid migra-

tion to this near surface-layer have a similar effect. To prevent these risks, an understanding 

the hygrothermal performance of the building envelope is essential. This in-depth 

knowledge is necessary not only when designing new construction, but also when planning 

the retrofit of existing building fabric. 

Condensation risk assessments are commonplace today in the design of new-build construc-

tion. Most of these assessments are based on indoor vapour loads, assume that adequate 

ventilation is provided and that liquid water only occurs in the form of vapour condensation. 

These forms of assessment are generally helpful for analysing new-build construction, as 

today’s construction design aims at preventing rain or ground water from penetrating 

(deeply into) the building fabric, often stopping the liquid by means of damp proof courses, 

impermeable rain screens and vented cavities. This way, liquid water does not need to be 

factored into the risk assessment. However, preventing liquid water penetration is often not 

possible or sensible in older forms of construction, for both conservation and technical rea-

sons. Until about a century ago, many walls in Britain were constructed as solid masonry 

walls. They were built as one mass, with bricks or stones bedded in earth or lime mortars. 

Such construction allows greater moisture ingress than today’s wall designs, but also ena-

bles easy dissipation of moisture from the wall’s surfaces. Solid masonry walls generally 
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manage changing levels of moisture content through their ability to buffer and redistribute 

moisture, properties often not designed into new-build construction today. It is no coinci-

dence that masonry walls in Britain tend to be thicker in regions with wetter weather condi-

tions. Brick walls in the dryer southeast of England are generally thinner than stone walls in, 

say, Cornwall, Scotland and Wales, which experience significantly more rain fall and higher 

levels of wind-driven rain. As said, vapour-based condensation risk assessments are a useful 

tool for some forms of construction, such as lightweight, timber-framed walls in locations 

not exposed to severe weather conditions. These assessments, however, might not be suit-

able for an in-depth analysis of older forms of construction, such as heavyweight masonry 

walls, or of construction exposed to severe weather. 

Fortunately, the field of hygrothermal physics has developed significantly over the past dec-

ades. About fifty years ago, condensation risk assessments required major simplifications 

and were performed graphically using the ‘Glaser method’ which still forms the basis for 

most assessments today. Over the last three decades, far more complex assessment meth-

ods have been developed, helped by the availability of ever better computing power. Now, 

hygrothermal assessments can be performed using numerical simulation, which requires far 

fewer simplifications than the Glaser method. The most important difference between the 

two assessment methodologies is that numerical simulation can account for liquid 

transport, whereas the Glaser method simply ignores it. There is huge benefit in using nu-

merical simulation for hygrothermal performance assessments of older forms of construc-

tion and of construction in locations with severe weather conditions. These assessments can 

be particularly informative for the retrospective installation of insulation in older buildings. 

To help construction professionals and policy makers understand better the impacts of en-

ergy-related building retrofits of older buildings, Historic Scotland (now Historic Environ-

ment Scotland appointed Building Life Consultancy, in 2010, based in Dublin. Their task was 

threefold: firstly, to present, in an easily accessible way, the basics of hygrothermal building 

physics and how they relate to building practice; secondly, to discuss the Glaser method and 

numerical simulation as the two assessment methodologies currently in use, together with 

the related technical standards and commonly available software tools; and, lastly, to 

demonstrate, in a case study, the two methods for assessing insulation retrofits to stone 

masonry walls. 

Scotland experiences often severe weather conditions, and the country’s west coast is par-

ticularly exposed to high levels of wind-driven rain. This Historic Scotland Technical Paper 

will hopefully foster a better understanding amongst conservation and construction profes-

sionals of the hygrothermal transport phenomena occurring in older forms of construction 

and of the assessment tools available to assess the moisture-related risks associated with 

insulation retrofits.  
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Executive summary 

This paper provides an introduction to the basics of hygrothermal building physics, discusses 

assessment methodologies, including related methods, standards and software tools and 

illustrates these in a case study. The report was written for construction professionals, wish-

ing to understand more about hygrothermal building physics, assessment methods and pos-

sible risks in retrofitting traditional buildings. While focussing on traditional construction 

and its retrofit, aspects of this report are also relevant for retrofitting non-traditional con-

struction. 

Hygrothermal building physics is the coupled heat and moisture transport that occurs within 

and through building elements, as influenced by their material characteristics and external 

conditions. Heat transfer and moisture movement occur through different physical 

transport mechanisms. Heat transfer occurs in the form of thermal conduction, thermal 

convection and thermal radiation. Moisture movement occurs by vapour convection or va-

pour diffusion, when the water is in its gaseous state, and by capillary transport or surface 

diffusion, when the water is in its liquid state. These mechanisms cannot be easily separat-

ed, because moisture carries heat with it and temperature differences impact upon the way 

moisture moves. 

Traditional buildings were erected using natural materials, such as stone and timber. Natu-

ral materials are generally porous and permeable, which means that they have  open-pore 

pore structures, thereby allowing moisture transport. There is a common misconception 

that modern construction materials are generally impermeable. Indeed, some such variants 

are even more vulnerable hygrothermally than older forms of the same building material. 

The greatest difference between buildings of traditional and non-traditional construction 

design lies not so much in the building materials used, but in the way they are used to con-

struct the external envelope of a building – in the way they are joined together. One may 

say that the defining approach of traditional construction is the management of moisture 

and, in contrast, one can say that modern construction systems generally depend on block-

ing, not managing moisture.  

The deterioration and decay that occurs in buildings almost always involves moisture. Since 

heat, water vapour and liquid water are all driven by different forces, they can ‘move’ in dif-

ferent directions at different times within the same wall. However, because the forces driv-

ing these transport phenomena are coupled, retrofit strategies to address one issue may 

have unexpected effects on another. Retrofitting building elements to improve thermal per-

formance carries an unestablished level of risk of moisture-related damage occurring, to the 

detriment of existing and newly installed portions of the building fabric as well as for occu-

pants. Three relevant moisture sources are identified in this report: indoor vapour, rain wa-
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ter (including wind driven rain) and ground water. The report further demonstrates that 

choosing the most appropriate risk assessment method is important to ensure that retrofits 

are durable, sustainable and create healthy environments. 

The report discusses two available methodologies for conducting hygrothermal risk assess-

ments: steady-state condensation risk assessments, using the Glaser method, and transient 

hygrothermal performance analysis, using numerical simulation. In Ireland and the UK, con-

struction guidance and practice are still heavily influenced by the diffusion paradigm, a re-

ductionist but deeply held view that vapour diffusion is the only relevant moisture transport 

mechanism in building fabric and the use of a vapour barrier to control it is always best 

practice. The Glaser method is suited for the comparative hygrothermal assessment of 

lightweight building fabric with well-vented rain screens in relatively sheltered conditions, 

but has little place in the evaluation of solid wall traditional buildings, as is clear from the 

limitations set out in the standards associated with it, BS EN ISO 13788:2002 and 2012. The 

Glaser method’s simplified, steady-state approach excludes several hygrothermal transport 

processes from consideration, such as liquid transport by capillary action or surface diffu-

sion, and short-term weather events such as driving rain and freezing conditions. All of the-

se are of particular importance in the hygrothermal assessment of traditional building con-

struction, particularly when internally retrofitted with insulation.  

Unlike the Glaser method, numerical simulation (under BS EN 15026:2007) can allow de-

tailed hygrothermal assessment of a wide range of issues, such as rot infestation, mould 

growth and freeze-thaw deterioration. It allows users to assess not only geographic location, 

but also the impact of different orientations, exposures, altitudes and even the radiative ab-

sorptivity of surface colours and night time radiative heat losses. Crucially, it can be used to 

assess short-term climatic events, inside or outside the building, with wind-driven rain being 

a particularly important factor when assessing solid walls. An increasing number of UK uni-

versities are researching hygrothermal performance, using physical testing and/or numerical 

simulation software. An increasing number of construction professionals in Ireland and the 

UK have been trained in its use and a limited number of colleges are creating formal aca-

demic programmes in hygrothermal assessment. While manufacturers of conservation 

products have been quickest to adopt numerical simulation software, many mainstream 

manufacturers of construction products now have personnel using numerical simulation to 

assess new products. Thus, a good basis is being created to allow a shift to occur in how risk 

assessment of buildings is carried out. However, the accuracy of hygrothermal assessments 

could be improved significantly if better hygrothermal material data were available. Labora-

tory measurement of a carefully chosen selection of traditional building materials, common-

ly used in Scotland, could significantly advance the accuracy of risk assessments. No existing 

materials from any building in Ireland or the UK have yet been subjected to the full range of 

hygrothermal testing.  
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The case study in this report has demonstrated, by comparing Glaser method and numerical 

simulation assessments (using BuildDesk U and WUFI software respectively), that moisture 

transport in solid, unrendered stone walls is predominantly in the form of liquid migrating 

through the materials’ capillaries, due to capillary action and surface diffusion. Vapour diffu-

sion plays a lesser role. The moisture absorption characteristic of an external wall surface 

determines the relative importance of the different transport mechanisms. When liquid 

transport is stopped within the building fabric, either by reaching a non-capillary active ma-

terial or any another form of capillary break, the liquid must be able to diffuse and evapo-

rate to the indoor or outdoor environment. Anything impeding this drying of the wall results 

in moisture accumulation and can lead to moisture-related deterioration and potential 

health risks to occupants. Interestingly, an increasing number of innovative insulation prod-

ucts are being developed specifically for use with traditional masonry construction. Manu-

facturers of such specialist products tend to have measured the full range of hygrothermal 

characteristics of their products, thereby aiding independent numerical calculation by third 

parties. 

Insulation retrofit in Ireland and the UK is gathering pace. The retrofit of new materials or 

systems within a traditional building often creates new conditions. Nationwide increasing 

cases of building fabric deterioration are resulting in additional expense and possible health 

risks to building occupant, unless more field research is carried out and the switch to hygro-

thermal analysis using numerical simulation speeds up. National retrofit campaigns, such as 

the UK’s Green Deal and Ireland’s Better Energy Homes Scheme aim at achieving significant 

improvement of the energy efficiency of the existing building stock quickly. These retrofit 

campaigns have provoked a sense of urgency in many quarters about the need to carry out 

knowledge gap studies, significant research and a shift to assessment under BS EN 

15026:2007, but the retrofits themselves are also increasing the complexity of the tradition-

al building stock and due to their lack of focus on the issues raised in this and other similar 

reports must surely be increasing hygrothermal risks, without giving all the promised energy 

savings. 

One-size-fits-all insulation strategies will not work in national retrofit programs. Energy-

related retrofit to traditional, moisture managing construction, carried out without careful 

and appropriate risk assessment, will be neither durable nor sustainable. Continuing to live 

within the diffusion paradigm by accepting unsuitable hygrothermal risk assessment meth-

ods is not in the national interest and should no longer be acceptable. The stakes are too 

high. 
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1 Introduction 

1.1 Context 

Heat and moisture transport are intrinsically coupled physical phenomena. Hygrothermal 

building physics describes these coupled transport processes. Because of this coupling, ret-

rofitting building fabric to improve its thermal performance is likely to also impact on its 

moisture performance, particularly in traditional construction. Therefore to avoid moisture-

related deterioration of the building fabric and health risks, retrofit measures need to be 

assessed not only for their thermal benefits, but for their hygrothermal impacts too. This 

report discusses two available methodologies for conducting hygrothermal risk assess-

ments: steady-state condensation risk assessments, using the Glaser method, and transient 

hygrothermal performance analysis, using numerical simulation. The report argues that 

steady-state assessment of vapour transport in solid walls may be inappropriate and mis-

leading for most traditional constructions, and that (the more recently developed) transient 

hygrothermal performance analysis is more accurate and allows a far greater range of con-

ditions and climatic events to be interrogated. The report further demonstrates that choos-

ing the most appropriate risk assessment method is important to ensure that retrofits are 

durable, sustainable and create healthy environments. 

Current governmental policies in the United Kingdom (UK) aim at significantly reducing 

greenhouse gas emissions, a large portion of which is associated with emissions from build-

ings in the form of carbon dioxide (CO2). (Palmer and Cooper, 2012, p. 6, side note) In the 

UK, space heating accounts for 65 % of residential energy use. (ibid., p. 33, graph 5b) The 

focus on the thermal performance of the building envelope, therefore, has increased greatly 

over the last decades, with building regulations requiring an ever better thermal resistance 

of roofs, external walls, windows etc., in order to reduce the required cooling and heating 

demand and, in turn, associated CO2 emissions and fuel costs. 

The Climate Change Act 2008 commits the UK to reduce carbon emissions by 

80 per cent by 2050 … Achieving these significant levels of carbon reductions 

will require a complete transformation of the UK’s existing homes to dramati-

cally reduce domestic emissions. 85 per cent of the UK’s existing homes will 

still be standing and in use in 2050, presenting a significant low carbon refur-

bishment challenge. 

(UK GBC, 2014, p. 5) 

Increased thermal performance requirements in building regulations however, only impact 

on new built construction and on buildings that undergo changes of use (conversion) or ma-

jor alterations: they do not impact on existing buildings. To achieve the UK emission reduc-
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tion targets of 34 % for the UK in general and 42 % for Scotland, both by 2020 against a 1990 

baseline, (HM Government, 2009, clause 2(1); Scottish Parliament, 2009, clause 2(1)) emis-

sions associated with the existing building stock needs to be significantly reduced also. 

(Boardman et al., 2005, p. 7, 84) This can be achieved by improving the thermal perfor-

mance of the building envelope with increased levels of airtightness and thermal resistance. 

Retrofit measures for each of these include draught stripping of windows and installation of 

(additional) insulation. In the UK, such retrofit construction work is supported by the gov-

ernmental Green Deal programme. (UK Parliament, 2011) 

Energy-related retrofits aim at improving the thermal performance of the building envelope, 

by reducing heat transfer. Heat transfer, however, is intrinsically coupled with moisture 

transport. The hygrothermal performance of building elements is the coupled heat and 

moisture transport that occurs within and through them, as influenced by their material 

characteristics and external conditions. The deterioration and decay that occurs in buildings 

almost always involves water. Moisture accumulation and transport within the building fab-

ric can lead, for example, to structural damage, spalling due to freeze-thaw, decay though 

rot, salt efflorescence and reduced thermal performance of insulants. Moisture accumula-

tion can also result in mould growth, a health risk for building occupants. Due to the coupled 

nature of heat and moisture transport, changing the thermal performance of the building 

envelope is likely to also change its moisture performance. 

Retrofitting building elements to improve thermal performance therefore carries an unes-

tablished level of risk of moisture-related damage occurring, to the detriment of existing 

and newly installed portions of the building fabric as well as for occupants. The execution of 

a careful condition survey (which may include some simple physical testing) and a hygro-

thermal performance analysis using numerical simulation are the appropriate responses to 

this as they enable the specifier of the retrofit works to quantify, control and minimise this 

risk, as much as is possible. Surely all parties involved with the energy efficient retrofit of 

buildings of any age can agree that, as a matter of course, risks should be established as 

best possible and minimised? 

While many of the buildings to be retrofitted in the UK’s existing stock are of recent origin 

and of non-traditional construction, approximately 20 % of the UK’s stock are traditionally 

built. The proportion in Wales and Scotland is higher than in England. As traditional solid 

walls manage moisture transport very differently to non-traditional wall constructions speci-

fiers need to be aware that different retrofitting technologies, different materials and dif-

ferent evaluation methods may be required for each. 

Most modern construction design aims at preventing moisture penetration either at the sur-

face of the external building envelope or at a specific layer within its fabric. This can either 

be achieved with membranes, preventing or reducing liquid and/or vapour transport, or 
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with vented cavities, preventing liquid transport. In modern wall construction, cavities are 

often incorporated to stop rain water migration from the outer to the inner wall leaf. Rain 

water can run down the cavity face of the outer leaf without transmission to the inner leaf: 

at least notionally the only moisture the inner leaf has to deal with is vapour (including con-

densed vapour). This approach to construction design is often referred to as non-traditional, 

though predominantly moisture blocking may be a more useful description in hygrothermal 

terms as there are a growing number of modern, highly insulated solid wall constructions 

that manage moisture very similarly to traditional solid walls. 

The term predominantly moisture managing may be used to describe traditional solid walls 

in hygrothermal terms: in this approach moisture migration is not prevented, yet the mate-

rials, layering and overall design ensure the structure has good drying capacity and can be 

long lasting. An example of this is solid masonry wall construction, which allows rain water 

absorption and water and vapour movement throughout, but also allows evaporation to 

both sides. Solid masonry construction was commonly in use until the early 20th century. 

(The terms predominantly moisture managing and predominantly moisture blocking, tradi-

tional and non-traditional construction will be discussed in detail in the report.) 

Today two hygrothermal risk assessment methodologies are in use in the construction in-

dustry. The first involves use of a simplified steady-state assessment (carried out by hand in 

the past but usually performed using proprietary software today), where the output from 

the calculations is clear and can be reported without additional analysis. The second uses 

transient numerical simulation software as a powerful tool within the overall hygrothermal 

performance analysis conducted by a trained and experienced user. Rigorous interrogation 

and interpretation of inputs and outputs is the key to successful use of the second method-

ology. 

Both methodologies are described in British Standards (BS), and various computer software 

programmes are validated against them. For steady-state assessments (that is assessments 

where time is fixed), the so-called Glaser method is commonly used. It is described in BS EN 

ISO 13788:2012 (BSI, 2013) and can be performed with software such as BuildDesk U. Be-

cause this kind of assessment focuses solely on the risk of vapour condensing during 

transport it has become known as interstitial condensation risk assessment. Transient nu-

merical simulation (that is the use of calculations to simulate conditions that change with 

every time step), as described in BS EN 15026:2007 (BSI, 2007a), reflects more closely the 

full complexity of building physics. The simulation is not limited to vapour transport, but ex-

plicitly accounts for the full range of liquid transport. Software based on the European par-

ent standard includes Delphin and WUFI. As hygrothermal performance analysis using these 

simulation tools has developed more recently than the Glaser method, and its first standard 

is as recent as 2007, it has yet to be widely adopted. 
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Moving forward, to support appropriate nationwide energy efficient retrofit of solid wall 

buildings, the rate of uptake of use of validated numerical simulation tools, and the hygro-

thermal performance analysis by trained professionals that relies on them, has to greatly 

increase. 

1.2 Report outline 

This report will introduce the reader to the basics of hygrothermal building physics, discuss 

assessment methodologies, including related methods, standards and software tools and 

illustrate these in a case study. The report was written for construction professionals, wish-

ing to understand more about hygrothermal building physics, assessment methods and pos-

sible risks in retrofitting traditional buildings. The report will be useful for architects, engi-

neers, building fabric consultants, building contractors, insulation manufacturers and build-

ing conservation practitioners. While focussing on traditional construction and its retrofit, 

aspects of this report are also relevant for retrofitting non-traditional construction. 

This report discusses hygrothermal physics (Section 2) and its application in building practice 

(Section 3) as well as the assessment methods and simulation tools available for this (Sec-

tion 4). Thereafter, the report presents a case study, comparing hygrothermal assessments 

of a variety of internal wall insulation retrofit measures (Section 5), before drawing conclu-

sions (Section 6). Further details on specific topics in the report are set out in the Appen-

dices. An abbreviation list and a glossary  are provided, to make use of the report easy. 
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2 Hygrothermal building physics 

2.1 Overview 

Hygrothermal building physics is concerned with heat and moisture transport, which are in-

trinsically coupled. Heat transport is influenced by moisture, and, conversely, moisture 

transport is influenced by heat. 

Heat and moisture transport can easily be experienced: just think of sunshine and rain or, in 

a building context, of heat and steam from a cooking pot. These forms of heat transfer and 

moisture movement occur within the air which surrounds us. Air is present in the outdoors 

and in indoor spaces. It can move within a room, from one room to the next and from within 

a building to the outdoors and back. In common building contexts, whenever air moves, it 

will entail heat and moisture transport. 

Air and moisture movement also occur within and through many materials. Most materials 

used in construction are porous solids, such as brick, stone and mortar. These materials con-

tain a microscopically small, interconnected pore structure, allowing air and moisture to en-

ter and move within (to a greater or lesser extent). Heat transfer can also occur in these ma-

terials, but, unlike air and moisture movement, heat transfer also occurs in non-porous ma-

terials. (And it can even occur in space, i.e. in an environment where there is no matter pre-

sent.) Heat transfer and moisture movement occur through different physical transport 

mechanisms. Heat transfer occurs in the form of thermal conduction, thermal convection 

and thermal radiation. Moisture movement occurs by vapour convection or vapour diffu-

sion, when the water is in its gaseous state, and by capillary transport or surface diffusion, 

when the water is in its liquid state. Unfortunately, these mechanisms cannot be easily sep-

arated, because moisture carries heat with it and temperature differences impact upon the 

way moisture moves. 

The different transport mechanisms are illustrated in a building context in Figure 1, showing 

a traditional stone wall typical for many older buildings in Scotland, but also in other parts of 

the UK and Ireland. 

The transport mechanisms will be discussed in detail later in this section. However, before 

discussing heat and moisture and the associated transport mechanisms, it is useful to start 

this introduction by describing the two media through which, in a building context, heat and 

moisture transport occur: the air and construction materials (Section 2.3). Then, heat and 

the transport mechanisms associated with it will be described (Section 2.4), followed by a 

discussion of moisture and the various ways by which it can be transported (Section 2.5). 

Finally, the coupling of heat and moisture transport will be discussed (Section 2.6). Before all 

this, a short note about the use of measurement units will be helpful. 
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Figure 1 Mechanisms of heat transfer and moisture transport, as they occur in solid 

stone walls, finished internally with plaster on timber laths: the core of such 

masonry is made of smaller stones with a large quantity of mortar. 

2.2 Units of measurement 

The International System of Units (abbreviated to SI based on its French title: Système In-

ternational d'Unités) are generally used in this report in line with modern European practice 

and standards, as set out in BS EN ISO 80000-1. Most SI units are decimal: some, most nota-

bly time, are not. It is a coherent system of measurement based on seven key units of 

measurement. For time it uses second (s), for distance metre (m), for mass kilogram (kg). 

Note that commonly used units like hour and litre are not SI units but are accepted to use 

with SI. Some non-SI units that are in common usage in the construction and building ser-

vices sectors such as kWh are used in this document. Having origins in the French Enlight-

enment, the modern system was first published in 1960, and is considered to still be evolv-
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ing. It has fully or partially replaced older measurement systems in much of the world. The 

UK government has adopted a policy termed ‘partial metrication’ whereby imperial units, 

also known as British imperial, (i.e. inch, yard, stone, etc.) remain widely used in unregulat-

ed sectors and common speech. The United States of America (US) is the best example of an 

economy that still uses a pre-decimal system (which is effectively the UK’s imperial system) 

termed US customary units, despite past efforts by the federal government to move to SI 

units. 

2.3 Media for heat and moisture transport 

Heat and moisture transport, in a building context, generally occur within two types of me-

dia: the air and the building fabric. Therefore, air and how it moves will be described first 

(Section 2.3.1), followed by a discussion of building materials, focussing particularly on the 

porous materials so commonly used in older building construction and describing in detail 

the pore structures of these materials, as these pores can have a significant impact on heat 

transfer and moisture movement (Section 2.3.2.1). 

2.3.1 Air 

Air surrounds us every day and almost everywhere. This dry air is a mix of gases containing 

approximately 78 % nitrogen (chemical abbreviation: N), 20 % oxygen (O), 0.1 % argon (Ar), 

0.04 % carbon dioxide (CO2) and small amounts of other gases. However, except when un-

der laboratory conditions, air is never completely dry, but contains a variable amount of 

gaseous water (on average around 1 %). Furthermore, air can also contain liquid and solid 

water, e.g. rain, snow and steam, and particles, such as small quantities of solid matter, e.g. 

dust, plant pollen, and ash from fires. 

Air exists in the outdoors and within building spaces, and it exists within the pore structure 

of materials. Because these pores are generally very small, air movement within materials is 

rather restricted. Outside of materials, air movement is an easily experienced phenomenon: 

just think of a windy day or of a draught near a slightly opened window. Air is almost always 

moving; still air is rather an exception. 

2.3.1.1 Air movement 

Natural air movement occurs generally due to differences in buoyancy and pressure. Differ-

ences in temperature and moisture content change the density and therefore the buoyancy 

of the air, causing warmer, lighter air to rise and cooler, heavier air to sink. Within a build-

ing, this is called the stack effect: it creates higher pressure in the upper floors, causing the 

air to push its way out through the building envelope (i.e. the building fabric separating the 
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building from the outdoor environment), and lower pressure in the lower floors, drawing air 

in from the outside. (Figure 2) 

 

Figure 2 Sketch section illustrating how air moves into, out of and within a building. 

Differences in pressure result from forces pushing on a body of air. In building contexts, the-

se can be natural forces, such as wind or buoyant forces, or mechanical forces, such as those 

created by mechanical fans or combustion appliances. (Figure 3) Regardless of the source of 

the pressure, it will tend to push air from a location of higher pressure to one of lower pres-

sure. Wind speed, wind exposure and external geometries create varying air pressures out-

side a building, which can ‘press’ outdoor air into one side of a building and ‘suck’ indoor air 

out of the other side, depending on the relative pressure differences. This can occur through 

openings in the building envelope, e.g. open doors, windows, vents, or through gaps in the 

building fabric, e.g. at joints between two window sashes or between window frames and 

walls. 
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Figure 3 Natural and man-made forces driving air flow through building envelopes. 

(Straube and Burnett, 2055, p272, fig. 7.2 / Image © Building Science Press) 

Within a room, air heated at floor level by a convector heater will rise to the ceiling, where it 

will cool down and drop down to floor level again, only to be heated again, rise once more 

and so forth. Convective air currents can result in heat transfer through thermal convection 

(Section 2.4.2) and moisture movement through vapour convection (Section 2.5.2). Stack 

effect in tall, heated spaces can also heighten the risk of moisture-related damage within 

the building envelope, as described in Section 3.2.2, because of its tendency to push or pull 

air through the building fabric. 

The various pathways of air movement are illustrated in Figure 4. 

 

Figure 4 Convection current in a room  
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2.3.2 Building materials 

Air, including the water vapour that it naturally contains, does not only exist in the building 

spaces surrounding us, but it also exists within most materials used in building construction, 

because most of these materials are of porous nature. This means that they do not only 

consist of mass, but also contain a microscopically small pore structure. Depending on the 

material, this pore structure can vary significantly and will affect how much and how easily 

air and moisture can move into, out of and through it. Understanding the ratio of mass to 

pores and the nature of the pore structure of a material is therefore important in assessing 

its hygrothermal performance. 

2.3.2.1 Pore structure 

The pore structure of a material consists of differently shaped and sized voids, or interstices. 

These voids are often interconnected, forming one or more networks. These networks are 

called the pore structure. Figure 5 shows a microscopic photograph of a polished sandstone 

section, in which the pore structure has been coloured blue, making it more distinguishable 

from the stone’s solid components. Figure 6 shows microscopic photographs of hemp shiv 

fibres and lime plaster. Figure 7 shows photographs of aerated concrete. Figure 8 shows 

photographs of mortar. All of the shown materials are porous (Section 2.3.2.3) and vapour 

permeable (Section 2.3.2.4) but radically different in pore structure. As the photographs are 

two-dimensional, they can obviously only hint at the volumetric nature and complexity of 

each porous structure. 

The pore structure shown in Figure 7  is extraordinarily complex: 

These photos show how difficult it must be to find a simple mathematically 

treatable pore model capable of reproducing even approximately actual pore 

space geometry vis-à-vis its complex influences on moisture storage and mois-

ture transport. 

(Krus, 1996, pp. 10-11) 

Fortunately, the geometrical nature of individual pores is not necessary to understand the 

moisture behaviour of a pore structure: 

The behaviour of any individual pore is of theoretical interest only: in general, 

one speaks rather of macroscopic pore structure parameters – those repre-

senting the average behaviour of a sample containing many pores. The most 

important of these parameters include the porosity, the permeability, and the 

specific surface area (the interstitial surface area of the pores – per either unit 

mass or unit volume – which is a measure of the adsorption capacity). Since 
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these macroscopic parameters are, together, uniquely determined by the pore 

structure of the sample, experiments designed to quantify them can serve to 

characterise the porous nature of the material. 

(Dullien, 1992) 

Thus, even porous, permeable materials that show great complexity and apparent hetero-

geneity at a microscopic scale do in fact act in a uniform and measurable manner at a mac-

roscopic scale, which is the scale of interested for hygrothermal assessments. 

As can be seen in Figure 5, Figure 6, Figure 7 and Figure 8, pore structures consist of a net-

work of differently shaped and sized voids, or interstices. The larger voids are often referred 

to simply as pores, or ‘large pores’, whereas the channels connecting the large pores are 

called capillaries, or capillary pores. (Figure 9) Other terms are also used to describe these 

different pore sizes. Hall and Hoff (2012) describes pores of different sizes as “voids, cavi-

ties, interstices and fissures which make up the total porosity” (ibid., p.7). Borrelli (1999) 

categorises pores, in the context of stone, into “micropores”, “mesopores” and 

“macropores” (ibid., p.4). And Fraunhofer IBP (2011) refers simply to “small and large capil-

laries”. 

 

Figure 5 Scanning electron microscope photograph of a sandstone sample, cut, polished 

and coloured in blue to highlight its pore structure: the photo is of 10 x magni-

fication, with the horizontal view approximately 3 mm wide 
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Figure 6 Scanning electron microscope photograph of hemp shiv fibres (left photo) and 

lime plaster (right photo), both at 250 x magnification. (Image © Mike Law-

rence / University of Bath) 

 

Figure 7 Scanning electron microscope photograph of aerated concrete with 22 x mag-

nification (left) and 11,000 x magnification (right). (Krus, 1996 / Image © 

Fraunhofer-Gesellschaft) 

 

Figure 8 Scanning electron microscope photograph of mortar with 50 x magnification 

(left) and 2000 x magnification (right) 
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Figure 9 Sketch illustrations of a material’s pore structure: the right illustration is a 

magnification of the left, showing a large pore with connected capillary pores. 

(Torraca, 2009, p.82, fig. 3.19 / Image © The J. Paul Getty Trust) 

To describe a material’s ratio of mass to pores and the nature of its pore structure, three 

physical properties are generally used: density, porosity and permeability. 

2.3.2.2 Density  

The mass of a material is often discussed using bulk density (ρ), a material property which 

describes the mass of a material per unit of volume. Density is normally given in units of 

grams per cubic centimetre [g/cm³] or kilograms per cubic metre [kg/m³], where 1 g/cm³ = 

1000 kg/m³. An important distinction must be made between the term particle density, de-

scribing the microscopic, molecular property of any particular substance, and bulk density, 

which is a macroscopic property that depends on physical geometry. For example, a solid 

steel block and an equivalent mass of steel wool are made of the same material and have 

the same particle density. However, because of the physical configuration of steel wool, 

which includes a large quantity of airspaces between the fibres, the volume of a steel wool 

sample will be much larger and the steel wool will therefore have a much lower bulk densi-

ty. Whereas particle density is an intrinsic material property that does not change in com-

mon practice, bulk density will change with configuration. 

2.3.2.3 Porosity 

Whereas density describes the mass of a material, porosity refers to the pores within a ma-

terial (in relation to its mass). Porosity (f) is the percentage of the material’s overall volume 

that is actually pores. Porosity is either described as a unit-less value between 0 and 1 or as 

a percentage [%]. The values of 0 and 1 (or 0 % and 100 %) are, of course, hypothetical: f=0 
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describes a material with absolutely no pores, whereas f=1 would mean that there would 

only be pores and, therefore, no material. 

Materials with a relatively large quantity of pores are called porous; those with a small 

quantity or none are called non-porous. Most building materials are, in fact, porous, but on-

ly few are of such a low porosity that they are called non-porous. The latter include, by ex-

ample, glass, metals and some plastics. Organic materials are almost always porous, for ex-

ample timber or thatch, but most inorganic building materials are also porous, for example 

lime, stone or concrete. However, the degree to which materials are porous can vary. 

Given the steel wool example above, bulk density and porosity are obviously related to each 

other: a material with a large porosity, such as mineral wool, is likely to be non-dense, or of 

lightweight, whereas a heavy-weight material, e.g. lead, is dense and not very porous. 

2.3.2.4 Permeability 

Whereas porosity is concerned with the quantity of pores in a material, permeability de-

scribes the connectivity of pores with each other and the environment surrounding the ma-

terial. Parts of a pore structure are open to a material’s surface, or boundary, connecting 

the pore structure to an adjacent material or the greater environment. Thereby, air and 

moisture from the environment can enter and leave a material via the pore structure. 

However, it does not automatically follow that all pores in a material are connected to each 

other. In fact, some pore connections may be dead ends; others may be small pore struc-

tures isolated from the rest, i.e. ‘ink bottle’ or ‘blind’ pores. Some pore structures will be 

connected to the surfaces of the materials and linked in a continuous path. 

Pore structures with a large proportion of interconnected networks, are called open-pore 

structures; whereas pore structures with mostly isolated pores or isolated pore networks 

are referred to as closed-pore structures. In an open-pore structure, “a nanoscopic ant 

could wander throughout the void space and eventually visit all points within it. This means 

that all pore space is available for flow of gas or liquid and is in communication with the en-

vironment in which the material finds itself.” (Hall and Hoff, 2012, pp. 6-7) If the ant wanted 

to wander through the material from one surface to another surface, it might not necessari-

ly be able to take a straight, direct route, but might need to wind its ways through the pore 

network. “The length of the tortuous path through the pores to get from A to B … may be 

much longer than the direct distance AB [Figure 10]. This ratio is one measure of the tortu-

osity of the pore system. The tortuosity has nothing to do with the size of the pores but en-

tirely depends on the connectivity of the pores system.” (ibid., pp. 23-5, bold formatting 

added to quotation) 
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Materials can be very porous, but still have a closed-pore structure that prevents air, va-

pour, or ‘a nanoscopic ant’ from navigating through it. Some present-day foamed insulating 

materials, such as polyisocyanurate (PIR) and polyurethane (PUR) insulation, rely on such a 

closed-pore structure to trap gases in order to achieve their insulating values. 

Even in open-pore structures, however, the tortuosity and the minimum cross section of the 

passage will significantly impede the ease with which air or moisture can pass through. 

 

Figure 10 Graphic image of a porous material showing tortuosity of a path AB: the super-

imposed three black spheres indicate the minimum pore width on path AB 

(sphere 1) and the minimum and maximum pore widths in the shown pore 

structure (spheres 2 and 3 respectively). (Hall and Hoff, 2012, p.25, fig. 1.10 / 

Image © Spon Press) 

2.4 Thermal transport of energy 

To understand what heat is one must first understand some key concepts and laws of phys-

ics in relation to how energy is present and how it transfers. This makes it easier to under-
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stand what heat and temperature are, the different mechanisms of heat transport (i.e. con-

duction, convection and radiation) and energy’s conservation. 

2.4.1 Thermodynamics, heat and power 

All objects above absolute zero, that is zero on the kelvin (K) temperature scale, have ener-

gy. (0 K is equivalent to -273.15 °C on the relative Celsius scale.) Another way of saying this 

is that above absolute zero the particles of all fluids and solids (whether molecules, atoms or 

sub-atomic particles) have internal energy that allows them to vibrate, rotate and move. 

This can cause the bodies they form part of to move, do work or be changed. The branch of 

physics concerned with this internal energy is called thermodynamics. 

Thermodynamic temperature is the measure of the average energy of all of the vibrational, 

rotational and translational motions of these particles. It is not surprising then that, unlike 

temperature, thermodynamic temperature is always measured from absolute zero. The full 

variety of these motions constitutes the internal energy of the body (commonly known as 

its thermal energy). The First Law of Thermodynamics states that in a closed system energy 

cannot be created or destroyed, only changed from one form to another. Phrases like work 

done or energy used, transferred or converted are therefore more appropriate than energy 

consumed, expended or lost. The First Law of Thermodynamics is of primary importance in 

understanding the many changing ways that energy transfer is manifested on Earth, albeit 

this planet is not a closed system. 

While a body is at rest its internal energy at any one time may be measured by a tempera-

ture reading. If it is at the same temperature as surrounding bodies no internal (or thermal) 

energy will be transferred between them, otherwise a transfer will occur: this energy trans-

fer is called heat. Incorrectly, it is often thought that heat is a form of energy and that tem-

perature measures heat: this is not so. Heat is defined as the transfer of energy from a hot-

ter to colder body other than by work or transfer of matter. The size of this difference (ΔT) 

can be thought of as its driving force, or driving potential. Heating will continue until ther-

mal equilibrium has been reached. As an example an adult human emits about 65 W at rest, 

more power than a lit 60 W incandescent luminaire, e.g. light bulb. However the portion of 

its internal energy transferred as heat (as opposed to the portion transferred as light) has a 

far higher temperature than the person’s hand: the resulting heat, i.e. energy transfer, will 

cause burning if contact is prolonged, long before thermal equilibrium can be reached. 

In simple terms sensible heat is heat exchanged by a body or thermodynamic system which 

results in a temperature change, such as with the hand and luminaire above. Latent heat is 

a form of energy transfer that allows a phase change in a body without a temperature 

change. The phases or states are solid, liquid and gas. (Sometimes plasma is included). 
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When a body is in motion or at work its speed or how it affects surrounding bodies, or in-

deed how they affect it, will show that a transfer or use of internal energy is occurring. The 

amount of energy present or transferred can be measured by joule (see definition below). 

Of course several forms of energy transfer may occur at the same time such as work, heat, 

light or sound emissions, with a further portion always retained as internal energy. Just 

think of the sparks and shrieks that might result from the emergency braking of a train’s 

wheels. 

The joule [J], an SI unit, is the measure of energy used or work done in applying a force of 

one newton through a distance of one metre. There are equivalent measures: calorie [cal], a 

metric but non-SI unit, is the approximate amount of energy needed to raise the tempera-

ture of one gram of water by one degree Celsius. 1 cal = 4.184 J; and British thermal unit 

[Btu], a non-metric, non-SI unit is the amount of energy needed to cool or heat one pound 

of water by one degree Fahrenheit. 1 Btu = 1.05 kJ (kilojoule). The British thermal unit was 

used in the UK until the 1980s and is still used in North America and elsewhere.  

The image of the braking train evokes a sense of tremendous power. In fact power is de-

fined as the rate of doing work, or to put it another way the rate of energy transfer. It is not 

surprising then that power’s SI unit is joule per second (J/s), though this is better known as 

watt (W), named for the inventor of the steam engine, James Watt. Unlike the measures of 

energy used or work done, power and heat are defined by rate – the energy used, or work 

done over time. These include watt, which is a joule per second [J/s] and Btu/h. In buildings 

these units are commonly used to describe the power of boilers, fans, luminaires, white 

goods and air conditioning systems. Because of the focus on energy conservation and com-

fort watt per kelvin (W/K) is used to describe the rate of energy transfer per degree of tem-

perature through the thermal envelope in buildings. Watt per square metre (W/m2) is used 

to describe the energy transfer rate across a surface. 

Kilowatt hour is used to describe the amount of energy transferred over a certain period of 

time. 1 kWh = 3.6 MJ (megajoule). The energy use of a building’s space heating system is, 

for example, normally stated in kilowatt hours. The energy transferred in large generating 

plants or whole economies might be described in GWh or TWh. Finally kWh/(m2
∙yr) de-

scribes the amount of energy transferred over a year per square metre of the thermal enve-

lope: the key unit of measure for building energy rating. 

As a body is heated or cooled its internal (or thermal) energy will change and thus its tem-

perature. The thermal inertia of a body is given by its specific heat capacity (cp), the amount 

of heat required to change one kilogram of the material by one degree and is given in units 

of joules per kilogram and per kelvin [J/(kg∙K)]. Bodies with high specific heat capacity re-

quire more energy to raise their temperature by one degree. 

http://en.wikipedia.org/wiki/Force
http://en.wikipedia.org/wiki/Newton_%28unit%29
http://en.wikipedia.org/wiki/Metre
http://en.wikipedia.org/wiki/Gram
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2.4.2 Thermal conduction 

Thermal conduction is a direct heat transfer mechanism from molecule to molecule caused 

by collisions between the molecules. As per 3.2.1 if two bodies are touching the one with 

stronger molecular movement will be termed the one with greater temperature. Transfer-

ring its internal energy, i.e. heating, will increase the agitation of the second body’s mole-

cules by chain reaction. Importantly thermal convection cannot occur in a solid and thermal 

radiation can only occur in a non-opaque solid such as Germanium (which is why this metal 

is used in the lens of thermographic cameras). However, thermal conduction can occur in 

fluids, i.e. liquids and gases, because collisions of molecules can occur. 

The measure of how quickly thermal energy is transferred by conduction through a material 

is thermal conductivity (λ) (previously termed k-value), given in units of watts per metre 

and per kelvin of temperature difference [W/(m∙K)]. Conductivity is dictated by the molecu-

lar and pore structure of a material and is independent of the material’s shape or dimen-

sions. The term thermal conductance describes the conductivity of a material that is de-

pendent on its shape and dimensions and is therefore given in units of watts per square me-

tre per kelvin of temperature difference [W/(m2
∙K)]. Thermal conductance should not be 

confused with thermal transmittance, or U-value, which is a combination of thermal con-

duction, thermal convection (where air cavities are present) and radiation. (Section 2.4.5) 

Compared to liquids and solids, gases are less conductive. Many insulation materials rely on 

this fact by having a closed pore structure which entraps less conductive air or other gases 

within the material. Air is a good insulant, particularly when relatively dry, but some other 

gases have better insulating properties. Gas layers are therefore commonly used in building 

construction to improve heat retention, and the entrapping of small pockets of gas within 

the closed pore structure of non-woven quilt or foam materials is the key principle behind a 

large number of present-day insulants. (Section 3.1.2) 

2.4.3 Thermal convection 

Thermal convection is a heat transfer mechanism whereby a fluid is brought into motion, 

either by gravity or another force, transferring thermal energy from one molecule to anoth-

er and thus from one place to another. Strictly speaking thermal convection is a combina-

tion of thermal conduction (Section 3.2.2) and thermal advection. The latter is solely heat 

transfer by bulk fluid flow. Where a fluid meets a solid surface heat is transferred conduc-

tively. 

An example of thermal convection in water is the circulation of hot water inside the pipes of 

a non-pumped, water-based heating system. An example of thermal convection in air is heat 

transferred from such a heating system through the outside surface of its heating pipes or 
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room heating panels (alongside a proportion of heat transfer through radiation). In a room, 

these convection currents will occur in the form of air movement. (Section 2.3.1.1) Hence, 

thermal convection will occur within any room that has surfaces or air supply at different 

temperatures. 

Because air is never completely dry, but always carries a certain quantity of water, move-

ment of air generally involves movement of water. In common usage, this movement of wa-

ter as part of the airflow is referred to as vapour convection. (Section 2.5.2) Because water 

has a relatively high heat capacity, i.e. it stores a lot of heat easily, moisture convection also 

involves movement of heat. 

2.4.4 Thermal radiation 

Thermal radiation is the third mechanism by which internal, or thermal, energy can be trans-

ferred. All bodies above absolute zero (0 K or -273.15 °C) radiate energy, even if they are at 

the same or lower temperature than the surrounding fluid or neighbouring bodies. 

Thermal radiation is emitted by bodies by virtue of their temperature; the at-

oms, molecules, or electrons are raised to excited states, return spontaneously 

to lower energy states, and in doing so emit energy in the form of electro-

magnetic radiation. Because the emission results from changes in electronic, 

rotational, and vibrational states of atoms and molecules, the emitted radia-

tion is usually distributed over a range of wavelengths. 

(Duffie and Beckman, 2013, p. 138) 

The electromagnetic spectrum extends from wavelengths thousands of kilometres long to 

those that are a fraction of the size of an atom. The term electromagnetism arises because 

a radiating wave has two fields, one electrical and one magnetic. They are always in phase 

and inseparable. 

All radiation is at the speed of light: in a building, it may be thought of as spontaneous, un-

like thermal conduction and convection. It can manifest as a wave or a solid particle de-

pending on what it passes through. The medium also determines the nature of absorption 

and emission of the spectrum. The electromagnetic waves of the sun reach the upper at-

mosphere of Earth as photon particles: the sun sends radiation over a wide spectrum but 

concentrated in the wavelengths that transfer thermal energy. The vacuum it passes 

through is a perfectly efficient transmitter ensuring minimal loss of its original wavelength 

spectrum. 

The electromagnetic spectrum classifies electromagnetic waves by wave length into the fol-

lowing categories, going from short to long wave lengths: gamma ray, x-ray, ultraviolet, visi-
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ble, infrared, micro- and radio waves. Figure 11 shows the band over which the wavelengths 

radiate thermal energy. It includes a small part of the infrared band, all of visible light and 

the large ultraviolet band. 

 

Figure 11 The electromagnetic spectrum is a logarithmical scale 

When radiation hits a surface, some of the radiation is absorbed into the body, some is re-

flected and a portion is transmitted through only if the body is non-opaque (in terms of ra-

diant energy). Thermal radiation hitting an opaque solid body will heat the outer surface 

with further thermal transfer occurring as thermal conduction, whereas thermal radiation 

will pass through fluids (such as air or water) heating the fluids en route. The heated fluid 

will then transmit that part of the original thermal energy as thermal convection along with 

whatever thermal energy it is already transferring.  

The ratio in which absorption, reflection and transmission occurs depends on the intensity 

and wavelength of the radiation and on the material properties. Radiation in the form of 

visible light (0.4 – 0.7 μm) can, for example, easily pass through an ordinary glass pane, but 

not through a stone wall, whereas infrared radiation with a wavelength longer than 4.3 μm 

cannot pass through glass. 

Solar radiation can be harnessed to heat buildings – directly or indirectly. As an example di-

rect solar radiation through a patio door will heat the thermally massive internal wall or 

floor inside. Indirect solar radiation includes the use of solar hot water collectors supplying 

hot fluids to a water-based heating system. Heating systems based on thermal radiation in-

clude the domestic open fire and, through use of piped hot water, under floor heating, radi-

ant wall heating and skirting radiators. What is today generally referred to as ‘radiators’ are 

in fact primarily convector heaters, since fins were added to increase the surface area thus 

making heat transfer to air moving past their large surfaces the dominant heat transfer 

mechanism. 

Infrared radiation can be used in the construction industry to assess the condition and per-

formance of building fabric, by using thermal imaging cameras. The often colourful images 

of such cameras can be used to investigate heat loss and dampness issues of building fabric. 
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While an excellent investigation tool, the adjustment needed to obtain a true surface tem-

perature, and interpretation of thermographic images requires suitable expertise, as such 

images can easily be misinterpreted and their appearance changed. Figure 12 shows two 

versions of the same thermographic image. The two versions differ with regard to the colour 

schemes and temperature ranges used. In all cases the temperature scale should be dis-

played to allow interpretation. 

 

Figure 12 Two versions of a thermogram (infrared image) with different colour schemes 

and temperature ranges applied 

2.4.5 Concurrency of heat transfer mechanisms 

The three different mechanisms for heat transfer have been described separately in the sec-

tions above. However, in reality, they often occur concurrently and are sometimes difficult 

to differentiate. To describe this concurrence of the transfer mechanisms for heat flow in 

materials, the physical property of thermal transmittance is used. 

Thermal transmittance, or U-value, describes the rate of heat transfer through one square 

metre of a structure divided by the difference in temperature across the structure. Thermal 

transmittance is measured in units of watts per kelvin and per square metre [W/(m²∙K)]. In 

the USA, it is measured in units of British Thermal Units per degree Fahrenheit and per 

square foot. Thermal transmittance differs from thermal conduction, in that thermal trans-

mittance is actually a combination of thermal conductions, thermal convection and thermal 

radiation through the material. (However, radiative or convective properties of material sur-

faces are not accounted for.) Although thermal conductance is the dominant heat transfer 

mechanism in solid materials, in loose and porous materials thermal convection and radia-

tion also contribute to their thermal transmittance. 

Thermal resistance, or R-value, is the reciprocal of thermal transmittance. 
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The R-value and U-value are material properties often used in the construction industry to 

describe the thermal performance of insulating materials. There are established methodol-

ogies for calculating U-values: BRE Report 443 is a Convention for U-values calculations (An-

derson, 2006), and BS EN ISO 6946 describes a Calculation methods for thermal resistance 

and thermal transmittance (BSI, 2007b). However, R-values and U-values relate to heat flow 

through a plane square metre of material and do not describe heat flow in geometrically 

more complex situations, such as room corners. How the three-dimensional reality of a 

building influences heat flow will be discussed in Section 3.1.5. 

2.5 Moisture transport 

2.5.1 Physical properties of water 

Water is practically everywhere on Earth. It covers approximately 75 % of the Earth’s surface 

and is ever-present in the air surrounding us. As with any matter, moisture can exist in dif-

ferent physical states of matter: as a gas, as a liquid and as a solid. However, water “is the 

only known substance that can naturally exist as a gas, a liquid, and solid within the relative-

ly small range of air temperatures and pressures found at the Earth’s surface.” (NASA, 2010) 

2.5.1.1 States of matter 

There are three physical states of matter: solid, liquid and gaseous. Matter can change be-

tween the different states depending on the environmental conditions, namely pressure 

and temperature. These changes are called phase transitions. Matter can change from be-

ing a gas into being a liquid into being a solid; the changes between these states are called 

condensation and freezing respectively. Conversely, matter can change from a solid into a 

liquid and then into a gas, with the phase transitions being called melting and vaporisation 

respectively. (Vaporisation can be in the form of evaporation, which only occurs on surfaces, 

or in the form of boiling, which can occur below surfaces. This report will refer to this phase 

transition as only evaporation.) The various states of matter and the terms related to its 

phase transitions are illustrated in Figure 13. (There is a fourth state of matter, plasma, but, 

as this is generally of no relevance in a building context, it has been ignored in this report.) 

Under everyday conditions, water can exist as a solid, a gas or a liquid. It is then normally 

referred to as ice when in its solid state, as liquid water when in its liquid state and as water 

vapour when in its gaseous state. In nature, for example, water occurs as ice or snow (solid 

water); as rain or river (liquid water); and as a clear gas in the air (water vapour). The above 

mentioned names for phase transitions – freezing and melting; condensing and evaporating; 

and depositing and sublimating – do obviously apply to water. The term thawing is some-

times used in lieu of melting. 
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Figure 13 Physical states of matter and terms related to the phase transitions (compare 

to Figure 15). (ElfQrin, 2011 / Image © ElfQrin CC BY-SA 4.0) 

Liquid water can freeze into ice and melt back into liquid water; water vapour can condense 

– think of the water droplets on bathroom tiling after a shower – and can evaporate, for ex-

ample when washing is hung up to dry. Examples for water deposition are snow forming in 

clouds or frost forming on the ground. And the process of water sublimation occurs when 

wet clothing is hung outside on a winter day under freezing condition, with the water in the 

cloth first freezing and then sublimating, resulting in the drying of the clothes. 

Air always contains water vapour, unless completely dried under laboratory conditions. But 

air can also contain small quantities of liquid water, e.g. water droplets in the form of 

clouds, mist or rain; and also small quantities of solid water, e.g. snowflakes or hailstones. 

Solid water does not often occur in indoor air, i.e. air within a building. Liquid water in in-

door air generally results from cooking or showering, e.g. steam rising from a boiling cook-

ing pot, but quickly evaporates into invisible vapour or settles onto a surface. 

In addition to indoor air, moisture can also exist within materials or, more strictly speaking, 

exist within the pore structure of materials. This pore structure is the ‘pathway’ which al-

lows moisture transport into, within and out of materials, as has been discussed in Section 

3.1.4. 

In a building context, at least in a climate such as that of Ireland or the UK, it is mostly the 

processes of condensation and evaporation and the absorption of liquid rain water that are 

of relevance for assessing the performance of building fabric, and will therefore be dis-

cussed in more detail below. Melting and freezing are of relevance when discussing the 

moisture-related deterioration of exterior building surfaces; this is known as freeze-thaw 

damage, or freeze-thaw weathering, and will be discussed in Section 3.2.2.3. 

2.5.1.2 Density of water 

Water has the lowest density when in its gaseous state. In water vapour, the molecules are 

further apart than in liquid or solid water, and, therefore, requires more space for the same 

https://en.wikipedia.org/wiki/File:Physics_matter_state_transition_1_en.svg
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quantity of molecules. In liquid water, the water molecules are closer together than in water 

vapour; therefore, liquid water has a higher density than water vapour and requires less 

volume for the same number of molecules. One could now assume that a similar relation-

ship exists with solid water: that the molecules in solid water are closer together, and that 

it, therefore, requires less volume and is denser. Indeed, this relationship applies to most 

matter, but not to solid water. Water in its solid state, i.e. when it is ice, is less dense than 

liquid water at a low temperature. Water expands, if not confined, to occupy 9 % greater 

volume in this solid state. This is the reason why icebergs can float in the sea. However, it 

also means that water which freezes expands in volume. 

If this phase transition from liquid to solid water occurs in a confined space, the increase in 

volume results in an increased pressure on the space boundary. This can be experienced 

when water in a pipe is allowed to freeze, bursting the pipe and resulting in leakage after 

thawing. This is why, to avoid such damage, outdoor water pipes need to either be drained 

before the winter or be placed sufficiently deep underground to protect the contained wa-

ter from freezing. Similarly, moisture within building materials can cause damage if it freez-

es and thaws, e.g. in the form of surface spalling. The impact of such freeze-thaw damage is 

describe in more detail in Section 3.2.2.3. 

2.5.1.3 Polarity of water 

Water molecules consist of one oxygen and two hydrogen atoms, hence its chemical symbol 

H2O. Due to the spatially unbalanced way the atoms are positioned relative to each other, 

water molecules have a slightly positive side near the hydrogen and a slightly negative side 

near the oxygen. (Figure 14) This phenomenon is called polarity and makes the molecules 

act like tiny magnets, easily connecting with each other, by forming chains and clusters of 

molecules, and with other matter, e.g. particles in the air or a material’s surface. 

 

Figure 14 Illustration of a water molecule (H2O) showing the spatially unbalanced distri-

bution of the two hydrogen molecules to the oxygen molecule. (Straube, 

2006a, p. 2, fig. 2 / Image © Building Science Press) 
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When water is in the form of vapour, it consists mostly of single water molecules moving 

relatively freely; in its liquid state the water molecules are unconnected, but drawn together 

into ‘clumps’; and when a solid, the molecules connect with each other, forming a solid 

network. (Figure 15) This means that one gaseous water molecule is smaller than a ‘clump’ 

of several molecules forming liquid water, which again is smaller than the molecular net-

works solid water is made of. The size difference between the single molecules of water va-

pour and the molecule ‘clumps’ of liquid water is particularly important for some mem-

branes used in building construction and clothing: these membranes have pores large 

enough to allow the small water vapour molecules to pass through, but are too small to al-

low larger ‘clumps’ of liquid moisture to pass. Examples for such membranes are in clothing 

‘waterproof-breathable’ fabrics, such as Gore-Tex or SympaTex, and in building construction 

‘breather’ membranes, such as DuPont’s Tyvek or Glidevale’s Protect TF200. (The use of 

such membranes in the retrofit of traditional buildings will be discussed in more detail in 

Section 3.1.2.) 

 

Figure 15 Diagram showing the different physical states of water and the phase transi-

tions processes (compare to Figure 13). (Straube, 2006a, p. 2, fig. 1 / Image © 

Building Science Press) 
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2.5.1.4 Sorption and desorption  

The polarity of water does not only affect how water molecules bond to each other, but also 

how easily they bond to the surfaces of solids. The process of adhering to a surface is known 

as adsorption and depends on the chemical composition of the material’s mass. The term 

adsorption should not be confused with absorption, which describes moisture being drawn 

from a material surface into its pore structure. Together the phenomena absorption and 

adsorption are called sorption, sometimes also described as wetting. The reverse process to 

sorption is desorption, also described as drying, which “occurs most commonly by evapora-

tion.” (Hall and Hoff, 2012, p. 1) A measure of the capacity of a material to absorb or desorb 

liquid (by capillarity) is sorptivity. It is measured over time and is generally stated in units of 

millimetre per minute [mm/min]. 

2.5.1.5 Hydrophilicity / hydrophobicity and hygroscopicity 

How easily water molecules can be adsorbed to a material’s surface or absorbed into its 

pore structure is described with the terms hydrophilicity and hydrophobicity for adsorption 

and hygroscopicity for absorption. 

Hydrophilicity and hydrophobicity describe to what degree a material surface attracts or 

repels water molecules respectively. This is a result of the chemical composition of the ma-

terial’s mass, both on the outer material surface and on the surface of the pore structure. A 

surface is hydrophobic if it tends to repel rather than adsorb water, as can be observed by 

water ‘beading’ on a surface. A surface is hydrophilic if it tends to adsorb water, as can be 

seen by water ‘sticking’ to a surface. (Figure 16) Waxes and resins are, for example, hydro-

phobic materials; glass and plasters are examples of a hydrophilic material. 

 

Figure 16 Graphic illustrations of hydrophilic and hydrophobic material surfaces (Torraca, 

2009, p. 36, fig. 1.74 and 1.75 / Image © The J. Paul Getty Trust) 
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Whereas hydrophilicity and hydrophobicity describe water adsorption to surfaces, hygro-

scopicity describes the degree to which moisture is absorbed into a material’s pore struc-

ture. A hygroscopic material is able to absorb vapour from the air and the water molecules 

within it into its pore structure without the material appearing to be ‘wet’. For example, a 

starched cotton napkin on a humid day will absorb water vapour from the air: the moisture 

interacts with the material, e.g. it may not hold its shape as well, but, even with this mois-

ture, the napkin does not feel wet. In comparison, a plastic grocery bag is the same on a dry 

day as it is on a humid day, because plastic does not absorb vapour. If there is condensation, 

the plastic bag will get wet as the dew lands on it. The hygroscopic napkin will absorb the 

vapour out of the air before it condenses into dew and will therefore only become ‘wet’ 

with liquid water when the material has absorbed as much vapour as its pore structure can 

hold. This means that hygroscopic materials are less prone to surface condensation and can 

help moderate humidity changes in a room by absorbing and desorbing vapour. Often the 

term hygroscopic is wrongly used to describe permeability, i.e. the ability moisture to enter 

or pass through a material, Section 2.3.2.4). Strictly speaking, hygroscopicity describes the 

degree to which the material’s mass absorbs and desorbs vapour from the surrounding en-

vironment and how that vapour is held within the material’s pore structure. 

2.5.1.6 Psychrometrics 

As already mentioned, air is a gas mix which, under everyday conditions, contains some wa-

ter vapour. This moisture-laden air exists all around us, but also exists in the pore structures 

of materials. Moisture is, hence, omnipresent in buildings and in their fabric. Predicting 

moisture movement is unfortunately very complex. Water can exist in the pores of the same 

material in all three states of matter simultaneously and can be changing between phases 

when the environmental conditions change. The branch of science concerned with the phys-

ical and thermodynamic properties of ‘moist air’, i.e. water vapour in a body of air is psy-

chrometrics, sometimes also referred to as psychrometry or hygrometry. (It should not be 

confused with psychometrics, a psychological discipline.) Psychrometrics explains how envi-

ronmental properties, including temperature, humidity and pressure, impact on gas-vapour 

mixes. The property of temperature has already been introduced in Section 2.4.1; those of 

humidity and pressure are introduced below. 

Pressure is a force applied to an area. It can be stated in a variety of units, including units of 

atmosphere [atm], bar [bar], newton per square meter [N/m2], pascal [Pa] and pounds per 

square inch [psi], with 1 Pa = 1 N/m2 and 100 kPa = 1 bar ≈ 1 atm ≈ 14.7 psi. The latter is 

roughly the pressure of the atmosphere on the Earth at sea level. Variations in atmospheric 

pressure, even slight ones, can obviously be significant for weather events. Such variations 

can also have an impact in building physics, as total pressure variations affect vapour 

transport. 
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Every gas, including air and water vapour, has a pressure. Air is a mixture of gases, the over-

all pressure of which is called air pressure. However, because air consists of different gases, 

the pressures of each of these gases can also be considered independently. The relationship 

between these different pressures is governed, chemically and physically, by Dalton’s Law of 

Partial Pressures. This law states that, when a gas is made of many components, the individ-

ual gases will each have their own pressure, their so-called partial pressure. The sum of the-

se partial pressures is the air pressure. However, the individual partial pressures are inde-

pendent of each other. It is as if all the gases ignore each other, and the partial pressure of 

each gas depends only on the number of molecules of that particular gas. (Figure 17) There-

fore, when discussing water vapour, the partial pressure of the vapour, or the vapour pres-

sure, is directly related to the number of vapour molecules present. 

 

Figure 17 Diagram illustrating the relationship of overall and partial gas pressures: the 

total gas pressure is the sum of the partial pressures of each particular gas. 

Humidity describes the amount of water vapour in the air. There are different ways of quan-

tifying how much vapour is present and, therefore, different terms for discussing humidity. 

The mass of water vapour in a certain volume of air is normally referred to as absolute hu-

midity, generally measured in units of gram per cubic metre [g/m3]. However, since the vol-

ume of air changes with temperature, absolute humidity can also change with temperature, 

even if the amount of vapour remains constant. To avoid any temperature dependence, the 

term humidity ratio used, which is the mass of water vapour per mass of dry air, generally 

measured in units of grams of water per kg of dry air [gw/kga]. Absolute humidity and humid-

ity ratio are both distinct from relative humidity, which will be introduced shortly. 

Under normal everyday conditions, water can easily change between the liquid and gaseous 

phase, depending on temperature. For any given temperature, there is a clearly defined 

maximum amount of water vapour that can exist in the air. Since absolute humidity and va-

pour pressure directly relate to the number of molecules present, there is for that particular 

temperature a maximum amount of absolute humidity and a maximum vapour pressure. 

The latter is also called saturation vapour pressure. Because the saturation vapour pressure 

is dependent on the temperature, it can be illustrated as a graph. (Figure 18) When the sat-

uration vapour pressure is reached within a body of air, the air is said to be saturated. 

Higher temperatures have higher saturation vapour pressures, as can be seen from the 

graph in the figure above. This is often thought of as warmer air can hold more moisture, 
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which also implies that cooler air can hold less moisture. Thus, if moist air is cooled, it loses 

its ability to ‘hold’ moisture and will eventually reach a point at which it becomes saturated. 

If it is cooled beyond this point, condensation will occur, which means that (some of the) 

water vapour will change into liquid state by forming water droplets, called condensate or 

dew. The temperature at which this occurs is the dewpoint temperature, often simply re-

ferred to as the dewpoint. In other words, the dewpoint is the temperature at which con-

densation occurs (regardless of the properties of the surrounding materials). This is the 

same as saying that it is the point at which the air is saturated or that the saturation vapour 

pressure has been reached. 

 

Figure 18 Graph illustrating the saturation vapour pressure (curved line) as a function of 

temperature and vapour pressure: in this example, the saturation vapour pres-

sure is approx. 1.2 kPa at a temperature of 10 °C. (compare to Figure 19). (BSI, 

2011, p. 21, fig. C.1 / Image © The British Standards Institution) 

It is useful to know how close a body of air is to reaching this state. This is described by the 

term relative humidity (RH), which is the ratio between the current vapour pressure and 

the saturation vapour pressure corresponding to the current temperature. It is measured as 

a fraction between 0 and 1, or as a percentage. Thus 1.0 or 100 % RH corresponds to the 

dewpoint. 

The relationship between current vapour pressure and saturation vapour pressure is illus-

trated in Figure 19, which shows a simplified psychrometric chart. The 100 % RH curve indi-

cates at which temperature and vapour pressure conditions condensation will occur. The 
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other RH curves are not relevant for condensation, but are important for assessing some 

forms of moisture-related deterioration and mould growth, which occur at lower relative 

humidity levels. A psychrometric chart is therefore helpful to understand at which combina-

tions of temperature and vapour pressure critical moisture levels are reached. (Moisture-

related deterioration and mould growth are discussed in Section 3.2.2. How to assess the 

risk of their occurrence is described in more detail in  Section 4.5. 

 

Figure 19 Simplified psychrometric chart showing the relationship between temperature 

(x-axis), vapour pressure (y-axis) and relative humidity (heavy lines): condensa-

tion will occur at 100 % RH, the graph of which indicates saturation vapour 

pressure and dewpoint temperature. (compare to Figure 18) (BSI, 2011, p. 21, 

fig. C.1/ Image © The British Standards Institution) 

Condensation can, for example, be experienced in a bathroom after having had a shower, 

which has raised the level of relative humidity to 100%. It can then generally be seen as sur-

face condensation on non-porous material surfaces, such as glazed tiles or glass, which can-

not absorb moisture. It does not generally occur on surfaces of porous materials, as these 

can absorb the occurring condensate into their pore structure. However, condensation can 

not only occur on visible surfaces, but also on the surfaces forming the pore structure of a 

permeable material and on the surfaces within a building element where two materials abut 

each other. The condensation is then referred to as interstitial condensation, which will be 

explored further in Section 3.2.1.1. 
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Because psychrometry is so important for understanding the moisture behaviour in build-

ings and their fabric, it is worthwhile discussing a good example of a psychrometric chart to 

understand what information it can provide. The example used here has been taken from BS 

5250:2011, the British Standard concerned with condensation control in buildings. The ex-

ample chart in Figure 20 demonstrates the relationship between relative humidity and dew-

point. The curved lines show relative humidity, the 100 % line being saturation (dewpoint). 

 

Figure 20 Psychrometric chart with five points (A to E) illustrating exemplarily how to 

read such charts. (BSI, 2011, p. 21, fig. C.1/ Image © The British Standards Insti-

tution) 

Point A represents a given volume of air at temperature 2 °C with a vapour 

pressure of 0.60 kPa: its relative humidity is therefore 90%. 

Point B represents that same volume of air, with the same moisture content 

(and, therefore, the same vapour pressure) but heated to 20 °C; its relative 

humidity will now be approximately 24%. This illustrates what happens when 

outside air enters a building and is warmed. 

Point C indicates that same volume of air at 20 °C, to which moisture has been 

added to bring its vapour pressure to about 1.4 kPa. That increase in moisture 

with no change in temperature means the relative humidity of the air has in-

creased to about 60%. This illustrates what happens when that warmed in-

coming air absorbs moisture from activities within a building, but is not heat-

ed. 
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Point D illustrates that saturation of that air will occur if it is cooled to its 

dewpoint temperature of about 11.9 °C; any further reduction in temperature 

will result in condensation occurring. 

Point E on the chart indicates that 80% RH will occur if the temperature of the 

given volume of air falls to approximately 15 °C. The risk of mould growth oc-

curring when relative humidity at a surface reaches 80 % … This illustrates 

that designing to avoid surface mould growth is more onerous than designing 

to avoid condensation. 

(BSI, 2011, p. 21) 

In the previous sections, the physical properties of water in its different states of matter and 

its behavioural relationship with air have been described. In the following, four distinct 

mechanisms of moisture transport will be discussed: vapour convection (Section 2.5.2), va-

pour diffusion (Section 2.5.3.1), surface diffusion (Section 2.5.3.2) and capillary transport 

(Section 2.5.4). Thereafter, the combined effects of these transport mechanisms will be de-

scribed. (Section 2.5.5) 

2.5.2 Vapour convection 

Because water vapour is a component of air, movement of air will always entail vapour 

transport. This transport mechanism is called vapour convection. It relies on bulk fluid flow, 

in this case the movement of a body of air. Without air movement to transport the mois-

ture, vapour convection cannot occur. In other words: still air, i.e. still-standing or immobile 

air, cannot transport moisture by convection. (Air can also transport small quantities of liq-

uid moisture in the form of droplet, such as steam when cooking. So strictly speaking, the 

term moisture convection should be used to include both transport of gaseous and liquid 

moisture. However, this report refers to vapour convection, as this is the more commonly 

used term.) 

Bulk fluid flow cannot generally occur in solids, as the pores of the materials are simply too 

small. Therefore, moisture convection cannot occur within building materials, with excep-

tions discussed in Section 3.1.6.3. However, it can occur through gaps and within air spaces 

and cavities in the building envelope. 

As vapour convection is moisture transport by air flow, it requires an understanding of air 

movement. This has already been discussed generally in Section 2.3.1. For example in the 

context of a room, the air circulation, or convective air current, results in the moisture in the 

air being circulated around the room, too, following the flow path of the air body. The phys-

ical phenomenon by which warm air can hold more moisture than cold air has already been 
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described in Section 2.5.1.6. This phenomenon can now applied to the just described exam-

ple for a convective air current: air will take up (more) moisture in a location where the air is 

heated up. It will then transport this moisture as part of its body to colder locations, where 

the air will cool down and can thereby no longer hold the same moisture quantity as before. 

Due to this, some of the moisture in the air will condense, forming liquid droplets. If, for ex-

ample, a cold window surface existed in the location where the air cools down, condensa-

tion would form on the window glass. This example illustrates how a convective air current 

can cause moisture transport. 

Vapour convection can occur not only in a single room, but throughout a building and into 

and out of a building. A common example for convection within a building is moisture pro-

duced by cooking in a warm kitchen, which is, if doors are left open, then circulated into 

colder living and bedrooms, where the moisture can condense on cold, non-hygroscopic sur-

faces, such as single-glazed windows. Whether the air movement by convection transports 

moisture into the building (or into vented cavities within the building fabric), or it transports 

the moisture out of the building, depends on indoor and outdoor humidity, pressure and 

temperature level. On a rainy and windy day, moisture might be transported through con-

vection into a building, particularly if, for example, windows and doors are being left open. 

On a sunny and dry day, the opposite might occur, with the air movement removing mois-

ture from the building. 

To control convective moisture transport independently from indoor and outdoor pressure 

and temperature differences forced convection is often used. This normally comes in the 

form of mechanical fan ventilation systems, by which the fan forces air flow in one direction. 

Mechanical ventilation can be an efficient method of removing larger quantities of moisture 

quickly from a room to the outdoors and is therefore often used in rooms where larger 

quantities of moisture are often produced, such as bathrooms, kitchens and utility rooms. 

Convection is a complex physical phenomenon transporting air, heat and moisture (and 

other fluids or particles). Convection transports moisture and heat much faster than diffu-

sion, described in Section 2.5.3. In theory, vapour convection should not occur in most 

building fabric. In practice, however, air movement and with it moisture transport occur 

through construction gaps, internal cavities and within air-filled materials. Convection, 

therefore, cannot be ignored when assessing the hygrothermal performance of building fab-

ric, as will be discussed further in Section 3.1.6. 

2.5.3 Diffusion 

Diffusion is the movement of molecules due to differences in concentration, driving parti-

cles from areas of high concentration to areas of lower concentration. Diffusion differs from 

convection in that diffusion does not require a current. The simplest example of diffusion is 
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a drop of dye being added to a still glass of water. The colour from the dye will spread out 

from the high concentration in the initial droplet to the low concentration in the clean wa-

ter, until eventually it is uniformly distributed. This also occurs within gases, such as water 

vapour in air; even with no convective air currents, moisture from areas of high humidity, 

i.e. areas with a high concentration of water vapour, such as a bathroom after a shower, will 

migrate to the rest of the house, where there is comparatively little vapour. At a much 

smaller scale, it also occurs within the air filling the pore structure of a solid material. It, 

therefore, differs from vapour convection also in another way: it can occur within some sol-

id materials, depending on their pore structure. 

It was already noted that diffusion occurs in a mix of fluids, when a concentration gradient is 

present. However, to complicate things further, there is a different form of diffusion that 

occurs at the surfaces surrounding such a fluid mix. To distinguish between the two, the 

terms bulk diffusion and surface diffusion are sometimes used to refer to diffusion in the 

free fluid and diffusion due to surface impact. Bulk diffusion, in the context of this report, is 

generally the diffusion of water vapour in air, more simply referred to as water vapour diffu-

sion or just vapour diffusion. It will be discussed in the next section, followed by surface dif-

fusion. (Section 2.5.3.2) 

2.5.3.1 Vapour diffusion 

The difference in vapour pressure is the driving force for vapour diffusion. Reversely, it will 

always act to distribute vapour molecules to equalize vapour pressure. Vapour diffusion and 

vapour pressure are inextricably linked. However, temperature also plays an important role. 

As vapour diffusion is driven by the gradient of vapour pressure, diffusion always goes from 

regions with high vapour pressure towards regions with low vapour pressure. (Figure 21) 

But this is not the same as saying that vapour diffusion always goes from areas with greatest 

to least amount of moisture. In a situation with non-constant temperatures, it can happen 

that vapour pressure and absolute humidity have opposite gradients. In these cases, diffu-

sion goes from a region with low absolute humidity towards a region with high absolute 

humidity. 

If the temperature is constant across a wall, vapour pressure and relative humidity are pro-

portional to each other. If one of them is constant, the other one is constant, too. If one of 

them has a gradient, the other one has a gradient in the same direction. However, if tem-

perature is not constant across the wall, the two are no longer proportional. If one of them 

has a gradient, the other one may have a gradient in the same direction or in the opposite 

direction, or it may be constant, depending on how temperature varies. 
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Figure 21 Diagram illustrating equalising pressures and vapour movement  

Consider the examples of a house in each of the following climates: 

1. In the Sahara, it is hot and dry outside (high external temperature and low relative 

humidity)  vapour moves from inside to outside  

2. In Florida in the summer, it is hot and humid outside (high external temperature and 

high relative humidity) while air conditioning makes internal conditions cooler and 

drier  vapour moves from outside to inside  

3. In Scotland in the winter, it is cold and damp outside (low external temperature and 

high relative humidity)  vapour moves from inside to outside 

In cases 1 and 2, vapour diffusion moves from high to low relative humidity. In case 3 how-

ever, the transport process goes in the opposite direction, with vapour being transported 

from low to high relative humidity. This is because, at low temperatures, air cannot hold 

much moisture. Even small amounts of vapour, therefore, result in a high relative humidity. 

However, as it is only a small amount of vapour and as the temperature gradient thought 

the walls is from the inside to the outside, the resulting vapour pressure gradient drives dif-

fusion from the inside to the outside also. 

Diffusion occurs through still air and, more slowly, through the pores of porous materials. 

The rate of diffusion through a material is affected by the properties of that material, which 

are particularly dependent on the form of its pore structure, as has been discussed in Sec-

tion 0. How difficult it is for vapour to move through a material, compared to still air, is de-

scribed with the unit-less water vapour diffusion resistance factor (µ-value), sometimes 

also referred to as vapour resistance factor or diffusion resistance factor. This value reflects 

the combined impacts of pore size, pore connectivity and tortuosity (Section 2.3.2.4). 

There is an abundance of terminology used to describe the ability of vapour to move 

through porous materials. Like the µ-value, vapour resistivity, measured in units of mega-

newton seconds per grams and per metres [(MN∙s)/(g∙m)], describes the inherent character-
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istic of a material to inhibit moisture diffusion. Vapour permeability is the inverse of vapour 

resistivity. Similarly, the equivalent air layer thickness (sd) is a measure of the actual re-

sistance of a particular thickness of a material (given as metres of still air). And vapour re-

sistance [MN∙s/g] and its inverse, vapour permeance, measure resistance or lack of re-

sistance of a specific width of material. The various terms described above can be converted 

from one to another. Regardless of the term used, vapour diffusion, like thermal conduc-

tion, is governed by the properties of the material. 

A material with a low µ-value can be called vapour-open, whereas a material with a high 

µ-value is referred to as vapour-closed. By definition, still air has a µ-value of 1. Obviously, 

the terms vapour-open and vapour-closed are related to the respective terms open-pore and 

closed-pore, when describing a material’s pore structure and permeability. Generally, the 

more open-pore a pore structure, the more permeable and vapour-open it is, and the lower 

is its water vapour resistance factor; and vice versa. 

Table 1 lists µ-values for a selection of materials. Two values are listed for each material, 

known as dry- and wet-cup µ-values. They are based on measurements where material was 

placed between a sample ‘cup’, which has a relative humidity of 3 % for the dry-cup and 93 

% for the wet-cup, and the surrounding environment, which is maintained at 50 % RH. Thus, 

it is the resistance of the material preventing the vapour diffusing from the cup to the room. 

Product / material / media Water vapour resistance factor μ 

  Dry Wet 

Air 1 1 

Bitumen, pure 50000 50000 

Concrete, medium density 100 60 

Fibreboard, incl. MDF, ρ=400 10 5 

Glass ∞ ∞ 

Granite 10000 10000 

Gypsum or lime plasters with sand 10 6 

Gypsum plasterboard 10 4 

Iron, cast ∞ ∞ 

Limestone, hard 200 150 

Mineral wool 1 1 

Phenolic foam 50 50 

Plywood, ρ=500 200 70 

Sandstone 40 30 
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Timber, ρ=500 50 20 

Timber, ρ=700 200 50 

Table 1 Values of water vapour resistance factor for selected materials for comparison; 

values as listed in BS EN ISO 10456:2007 (BSI, 2010) 

The use of the dry-cup and wet-cup method is a generally accepted means of measuring and 

reporting µ-values. However, there is still debate if this entirely captures the complex phe-

nomena at work. 

Measurements of µ which are performed at different levels of relative humidi-

ty (dry-cup and wet-cup) may result in different values for one and the same 

material. This is due to surface diffusion which becomes noticeable at higher 

humidities but is more properly treated as liquid transport. This additional 

moisture transport is usually not separated out in the analysis of the meas-

urements and, lumped together with vapour diffusion, reduces the apparent 

diffusion resistance, resulting in a lower µ-value. 

(Fraunhofer, 2009) 

This means that the earlier tabled dry-cup and wet-cup µ-values are an over-simplification, 

causing an additional moisture transport mechanism, surface diffusion, to be masked. 

2.5.3.2 Surface diffusion 

Vapour diffusion describes the movement of gaseous water molecules in air. If these mole-

cules come into contact with the surface of a hygroscopic material, e.g. within the material’s 

pore structure, the water can condense through adsorption, changing from vapour into a 

liquid. This condensation by adsorption is slightly different than the condensation described 

previously in Section 2.5.1.6, because it is not strictly tied to saturation and dewpoint tem-

perature. It is rather that the molecular forces close to the surface are strong enough to pull 

nearby water molecules out of the vapour into a liquid state on the surface. (Section 2.5.1.4) 

The higher the relative humidity, the more easily the water molecules condense in this fash-

ion. This only occurs on material surfaces to which water molecules can adhere, namely hy-

drophilic surfaces. This is illustrated in Figure 22, showing how water molecules can ‘cling’ to 

the surfaces of the pores of a material. 

Once on the surface, these molecules do not necessarily stay in one place. If sufficient liquid 

water is available, it will form a water film, which will allow water molecules to move further 

along the surface to dried locations. This means that the molecules of the water film will 

move from locations of higher relative humidity to locations of lower relative humidity. This 

mechanism of liquid transport on solid surfaces is referred to as surface diffusion. This 

mk:@MSITStore:C:/Program%20Files/IBP-Software/WUFI5/WUFI_Pro.chm::/LiquidTransportCoefficients.htm
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transport mechanism is an important and integral part in understanding moisture transport 

in porous materials, but is often neglected in hygrothermal building fabric assessments. One 

of the reasons for this may be twofold: vapour transport by diffusion has long been recog-

nised in the commonly used risk assessment methods, and liquid transport by capillary forc-

es, although less commonly considered in risk assessment, is still far easier to observe in 

practice. 

 

Figure 22 Microscopic photo of a pore structure and graphic illustration showing how the 

liquid water can adhere / be adsorbed to the surfaces of pores. (Fraunhofer IBP 

/ Image © Fraunhofer-Gesellschaft) 

2.5.4 Capillary transport 

Capillary transport is the mechanism that draws liquid through a material’s pore structure, 

when completely filling the pore spaces. Capillary transport occurs without the assistance 

of, and sometimes in opposition to an external force, such as gravity. Capillary attraction, or 

capillarity, describes the ability of water to do this. Capillary action, capillary suction and 

‘wicking’ are analogous terms describing the effect, while capillary active refers to materials 

that exhibit a particularly strong wicking action. A good example of a capillary active insula-

tion material is calcium silicate board, which has been specially engineered to have a pre-

ponderance of narrow capillaries. 

Capillary transport is most obvious when liquid is seen rising up the uniform, narrow tubes 

used in a laboratory. Other examples of capillary transport are paint being drawn between 

the fibres of a brush, wax rising up a lit candle wick, a droplet of water being drawn into a 

paper towel, and rising damp in a stone wall. 
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Figure 23 illustrates liquid transport by capillary action graphically (left side of figure) and 

with two photographs showing wicking over time in two porous blocks. 

Capillary transport can also occur outside a material’s pore structure, in any form of narrow 

joint or gap, for example, cracks in a mortar joint or gaps between window cills and the sur-

rounding wall construction. Capillary action can thereby be responsible for the transport of 

liquid water deep into a wall construction that otherwise may display desirable weather-

resisting properties. 

 

Figure 23 Liquid water risen vertically due capillary transport, illustrated graphically (left) 

and with two photographs showing rising water transport in a concrete block 

over time (right). (Left image: Torracca, 2009, fig. 3.17 / Image © The J. Paul 

Getty Trust) (Right image: Image © APN MJM CC BY-SA 3.0)  

”The predominant moisture transport mechanism in capillary porous materials is the capil-

lary liquid transport.” (Fraunhofer IBP, 2008) In other words, more water is transported 

through capillary transport than through surface or vapour diffusion. It is therefore worth 

examining capillary transport in more detail. 

Sorptivity is “the tendency of a material to absorb and transmit water and other liquids by 

capillarity” (Hall and Hoff, 2012, p. 102) and was already mentioned in Section 2.5.1.4, when 

discussing the sorption. 

The processes by which capillary transport occurs are complex. In simple terms, the forces 

that attract water molecules to a surrounding surface (adhesion) draw the water in contact 

along the surface. This forms a curvature at the surface called a meniscus. The forces that 

bind the water molecules together (cohesion) pull a column of water as the surface is drawn 

along. In narrow capillaries, there is proportionally more surface area in contact with the 

water column. Therefore, adhesion forces play here a larger role, compared to those occur-

ring in wider capillaries. Large capillaries can receive more water (at the source), but narrow 

ones experience a greater suction and draw the water received further. (Figure 24) 

https://commons.wikimedia.org/wiki/Category:Capillary_action#/media/File:Capillary_Action.jpg
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Figure 24 Capillary ascension in ideal material pores due to capillary pressure (Fraunho-

fer IBP / Image © Fraunhofer-Gesellschaft) 

Capillary transport is similar to surface diffusion in that it is liquid transport in the direction 

from a ‘wetter’ to a ‘drier’ location. However, for capillary transport to occur, sufficient 

quantities of liquid water need to be available at the ‘wet’ location to fill the pore spaces, 

rather than just forming a water film on the pore surfaces, as is required for surface diffu-

sion. The difference in the water content between the wetter and drier locations is the driv-

ing force for capillary transport. 

The equilibrium state of the water in an unsaturated porous material is char-

acterized by its capillary pressure function Pc(θ). We may therefore regard 

this as the defining capillary suction property of any porous material. It is of 

course defined in relation to a stated wetting liquid – which for brick, stone 

and concrete is invariably water. 

At first sight this definition is somewhat surprising because it shows that the 

suction depends not only on the material, but also on the water content θ. 

However this is consistent with everyday experience. When saturated, materi-

als exert no suction. The suction exerted by any and every material is at its 

greatest when the material is dry and diminishes as the water content rises. 

When we talk descriptively of a ‘high’ suction material, we mean that the ma-

terial has a large negative capillary pressure at low water content in the air-

dry state. Such a material absorbs water from an external water reservoir, 

just as water rises into a fine capillary tube. However our definition of suction 

tells us only about the stress within the water and not about the amount of 

water that the material can absorb. The suction is an intensive property. The 

capacity of the material depends of course on the porosity rather on the suc-

tion. 

(Hall and Hoff, 2012, p. 46) 

The capillary suction and sorptivity depends on several physical properties relating to the 

material’s pore structure and physical mass. How easily water molecules can adhere to pore 
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surfaces obviously plays a role, i.e. the material’s hydrophilicity. However, the properties 

relating to the pore structure are often more important. Obviously, capillary transport re-

quires an open-pore pore structure to occur. The geometry of the pore spaces is also im-

portant, as capillary transport requires capillaries, i.e. pores of sufficiently narrow diameter 

that water molecules can span from one pore surface to the opposite one. 

If the space between pore surfaces is interrupted or becomes much wider, the capillary ac-

tion can become sufficiently weak for wicking to cease. A location in pore structure where 

this occurs acts as a capillary break, preventing moisture transport by capillary action. Ex-

amples of capillary breaks commonly used in building construction are the cavities between 

the inner and outer wall leaves the insertion of a horizontal damp proof courses. However, 

some highly permeable materials, e.g. a layer of expanded polystyrene bead or mineral 

wool insulation, can also act as a capillary break within a wall construction. 

Whereas the terms hydrophilicity and hydrophobicity describe how water molecules react to 

a material’s surfaces in capillary active materials, the quantities of water absorbed into and 

distribution through a material are described by the moisture diffusivity. Determining the 

moisture diffusivity over all possible moisture contents requires complex laboratory equip-

ment, but the wetting diffusivity can be estimated from the water absorption coefficient. 

Wider capillaries, when completely filled, allow liquid water to be sucked through them fast 

(away from the source), as their surface resistance plays a smaller part. In contrast, the sur-

faces of narrower capillaries exert an adhesion effect over a greater proportion of the water 

present, but also create more drag. As a result, the water is sucked further, but more slowly. 

When a wetting event ceases, the wider linked pores begin to act more like capillary breaks, 

while the narrow pores keep drawing from the reservoir of the larger pores, redistributing 

the water ever further from the source. 

Figure 25 illustrates liquid adsorption and redistribution, as part of capillary transport. The 

figure portrays a notional uniform material of interconnected capillaries of differing diame-

ters. The graphs in the figure show how, during and after a wetting event, the moisture con-

tent can vary not just in distance from the water source, but also in accordance with the ma-

terial’s range and distribution of capillary types, even if equidistant from the source. In 

building construction, an understanding of the moisture absorption characteristic of the ex-

ternal facing material of the building envelope is particularly important, as these deliver the 

water the rest of the building fabric has to deal with. What this means in construction prac-

tice is discussed in more detail in Section 5.3.4.2. 
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Figure 25 Capillary transport phenomena represented by a model of interconnected cy-

lindrical capillaries of various diameters (Fraunhofer IBP / Image © Fraunhofer-

Gesellschaft) 

The water absorption coefficient describes how fast moisture is absorbed from a material’s 

outer surface into its pore structure. This coefficient is an important value particularly for 

assessing materials exposed to liquid water, e.g. in the form of rain. Different types of mate-

rials obviously have different coefficients. However, they can also vary greatly between ma-

terials often considered to be similar: a material with a low water absorption coefficient will 

absorb less moisture than a material with a high coefficient. Therefore, in the former mate-

rial, there will be less moisture to migrate through its pore structure, compared to the latter 

material. 

This can be illustrated with a comparison of the water absorption coefficients of two sand-

stone types: Zeitzer sandstone has an water absorption coefficient of 0.003 kg/(m²∙√s), 

whereas Rüthener sandstone has a coefficient of 0.286 kg/(m²∙√s). (Fraunhofer IBP, n.d.1) 

The difference between these two coefficients is a factor of one hundred, which means that 

the former stone type absorbs water far slower than the latter. (This does not preclude 

them having the same amount of water at a particular time). 

2.5.5 Concurrency of moisture transport in gas bodies 

In the previous sections, moisture transport by convection, diffusion and capillary action 

were discussed. These transport mechanisms occur often simultaneously. However, a dis-

tinction can be made between the moisture transports in large gas bodies, e.g. an air body 

within a room, and in the microscopically small pore structure of materials. 

In gas bodies, moisture transport generally occurs fastest through moisture convection, if 

sufficient air movement is present to provide the required bulk fluid flow. Moisture 

transport will also occur through vapour diffusion, as generally some gradient of relative 
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humidity or pressure will be present. However, vapour diffusion is a much slower transport 

mechanism than moisture convection. 

2.5.6 Concurrent moisture transports in the pore structures of materials 

Vapour diffusion, surface diffusion and capillary transport can occur simultaneously in the 

pore structure of hygroscopic, porous building materials. (Convection cannot occur in solid 

materials, with the exceptions discussed in Section 3.1.6.) Which transport mechanisms are 

where and when at work in a pore structure depends on how much vapour, liquid water and 

heat are present and on the geometry and size of the pores. Water vapour will always be 

present, except when a pore is completely filled with water. The water content in the pore 

spaces can, however, influence which transport mechanisms are dominant at a certain point 

in time. 

With rising relative humidity inside the material pores, more and more mois-

ture is stored at the inner surface of the pores (surface diffusion). Dependent 

on the pore size, the filling degree can reach from a mono-molecular or multi-

molecular moisture film up to a complete fill. As most materials show a wide 

range of pore sizes, the filling degree inside the pores can be different at the 

same time. With rising liquid moisture inside the pores, an increasing liquid 

moisture transport begins along the gradient of relative humidity. 

(Binder, Zirkelbach and Künzel, 2010, p. 2) 

During redistribution, capillaries furthest from the wetting source will cease to be complete-

ly filled, resulting in liquid water lining the surfaces. Surface diffusion will then join vapour 

diffusion as the relevant moisture transport mechanisms. 

Figure 26 illustrates this concurrence relationship in which capillary transport and surface 

and vapour diffusion can occur in a pore structure. The transport directions shown in the 

figure are dominant during wintertime in single leaf masonry walls in northern Europe. Be-

cause the cold air outside has less ability to hold moisture, the vapour pressure tends to be 

higher indoors than outdoors, driving vapour diffusion outward. However, at the same time, 

surface diffusion tends to transport water inwards, as space heating regimes result in lower 

relative humidity indoors. If large capillaries are filled with rain water, they will also wick liq-

uid inwards, for redistribution by smaller capillaries thereafter. 
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Figure 26 The three different water transport mechanisms possible in a porous, hygro-

scopic material: vapour diffusion, surface diffusion (of liquid water) and capil-

lary action (also of liquid water). (Fraunhofer IBP / Image © Fraunhofer-

Gesellschaft) 

2.5.6.1 Moisture storage function 

Each porous material has a defined relationship that determines how much moisture is pre-

sent within the pore at different conditions and, therefore, what moisture transport mecha-

nisms are present. This relationship is described by the moisture storage function. Figure 27 

shows an example of a moisture storage curve, illustrating that, for every relative humidity 

value, a specific corresponding moisture content can be obtained, once conditions have 

reached equilibrium. (Künzel, n.d.; Holm and Künzel, 2000) 

 

Figure 27 Moisture storage function curve of a material (Fraunhofer IBP / Image © 

Fraunhofer-Gesellschaft) 
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The moisture storage function can be used to simulate and thereby predict the moisture 

conditions under changing environmental conditions. A relative humidity of 80 % is often 

used as the reference water content (w80), as it is considered the normal equilibrium mois-

ture content of many porous materials. A relative humidity of 100 % is referred to as free 

saturation (wf): a capillary-active material will wick water until free saturation is reached. 

These node points can be seen in Figure 27. Where measurements aren’t available for suffi-

cient points to create the moisture storage curve, it can be interpolated by the software us-

ing the moisture content at 80 % and 100 % RH. 

The moisture storage curve is thereby a function of the relative humidity (seen on the X-

axis) and the water content, divided into three regions, or phases, (seen on the Y-axis): the 

sorption moisture region, the capillary moisture region and super-saturated region. The first 

region is present up to the point that the last vapour molecules in open pores condense into 

the surrounding liquid. In this large region, liquid water is present first as monomolecular 

layer and then as multi-molecular layer, adhering to the pore wall. However, the pores 

themselves are not filled. Vapour diffusion occurs in the central air space of the pore and 

surface diffusion may occur along the pore walls. The second region, the capillary moisture 

region, represents the point where linked capillaries are filled (therefore up to 100 % RH) 

and moisture transport by capillary action replaces vapour and surface diffusion. (Given the 

shape of the curve it should be noted that at a relative humidity at 95 % RH a porous hygro-

scopic material can have a moisture content many times less than at 100 % RH. This will be 

important during the hygrothermal assessments in Section 5.3.) The third region, the super-

saturation region, represents a situation where all air pockets in all pores, even dead-end 

pores or closed pores, are filled with liquid water. 

2.5.6.2 Hysteresis 

Moisture movement in a porous material has so far been described as if each condition is 

occurring for the first time. In reality, however, there will generally have been previous wet-

ting and drying events and previous changes in humidity, which will affect the impact of cur-

rent events. This dependence on past events is called hysteresis. For example, when pores 

have been wetted previously, the way in which they will now dry is slightly different. In oth-

er words, the relationship of relative humidity to moisture content in a drying phase is dif-

ferent to that relationship in a wetting phase specifically, because the latter came first. This 

difference can be graphed and is known as a hysteresis cycle. Figure 28 shows indicative 

hysteresis cycles for three types of materials. 
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Figure 28 Graphs showing the hysteresis of timber (generalised), of a type of brick and of 

an aerated autoclave block  

Hysteresis is to be expected, since for any unsaturated situation there must 

essentially be an almost infinite number of possible configurations for the wa-

ter molecules. Whenever the material is totally saturated or totally dry the 

molecular distribution is in some sense predictable. At all other times it will be 

the unpredictable result of all the many forces acting on each molecule. 

(Pender, 2004, p. 54) 

The impact of hysteresis on moisture transport is generally omitted, when assessing building 

fabric hygrothermally. Although this appears to be a suitable approach in many situations, 

there are some construction products, e.g. specifically designed wood fibre boards, which 

would benefit from taking hysteresis cycles into account. However, a discussion about this is 

outside the scope of this report. 

2.6 Coupled heat and moisture transfer 

Predicting and modelling heat and moisture transport is complex, not only because of the 

multitude of the different transport mechanisms at play, but also because of the fact that 

they directly impact on each other at any given point in time. Water has a high heat capacity 

and will absorb or release heat when it evaporates or condenses. Therefore, moisture 

transport and phase changes from liquid to vapour and vice versa will change temperature 

gradients, thereby impacting on heat transfer. Conversely, relative humidity is dependent 

on temperature, as warmer air can hold more vapour than colder air. Therefore, heating or 
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cooling can lead to evaporation or condensation, thus changing the water content and va-

pour pressure, which drive moisture transport. 

Because of this interrelationship, heat transfer and moisture transport are said to be cou-

pled physical processes. This means that they cannot accurately be solved independently, 

but must be considered together at the same time. In building practice, this means that the 

impacts of both processes must be taken into account, when designing new buildings and, 

even more so, when retrofitting existing ones. A retrofit project with the sole focus on im-

proving energy efficiency by reducing heat transfer will also impact upon the moisture be-

haviour of the building fabric. To avoid any detrimental side effects, coupled heat and mois-

ture assessments, i.e. hygrothermal assessments, are required. 
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3 Application of building physics  

The most common single cause of building deterioration is dampness, and it 

has been estimated that over 1.5 million dwellings in the UK are seriously af-

fected by dampness problems. The principal sources of dampness are rain wa-

ter penetration through roofs and external walls, rising damp through walls 

and solid floors, and condensation. Because its causes and prevention are dif-

ferent from those of other sources of dampness, condensation is dealt with 

separately. Owing to the increased humidity created through modern cooking 

and heating devices and reductions in natural ventilation, condensation is re-

sponsible for a large proportion of dampness and mould growth. The courses 

of moisture can come from inside or outside the building, and it is essential 

that proper investigation is undertaken to determine the cause of dampness 

before any remedial action is taken. 

Gorse & Highfield (2009), Ch.6, Section 6.1, p.122 

An introduction to the elements of physics that are relevant to solid wall buildings was pro-

vided in Section 2. How this knowledge can be applied to buildings in a practical context is 

the topic for the following sections. Related assessment methodologies and simulation tools 

will be discussed thereafter in Section 4. Whereas the previous sections focussed on funda-

mental physics, such as heat and moisture transfer, the following sections will investigate 

the more practical aspects encountered in building construction. Buildings are three-

dimensional objects with often complex geometries and made from a variety of materials, 

joined together. All this, obviously, impacts on how heat and moisture is transported 

through the building fabric. 

Section 3 is split into two parts. In the first sections, building materials and construction de-

sign will be discussed, by defining the difference between the terms traditional and non-

traditional (Section 3.1.1) and applying them to building materials (Section 3.1.2) and to 

construction design (Section 3.1.3). A nomenclature describing the hygrothermal character-

istics of buildings is proposed in Section 3.1.4. Thereafter, the impacts on heat and moisture 

transport of building geometry and of airtightness and thermal bypass will be described 

(Section 3.1.5 and Section 3.1.6 respectively). The second part of this section will focus on 

the impacts of moisture in the building envelope, identifying the relevant moisture sources 

(Section 0) and describing moisture-related deterioration and health risks (Section 3.2.2). 

3.1 Building materials and construction design 

3.1.1 Traditional versus non-traditional 
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The term traditional is sometimes used to refer to older buildings. It generally describes 

buildings, building materials, construction design and construction techniques which were 

commonly in use before the 20th century. For walls in Scotland, the predominantly used and 

therefore traditional form of construction design is the solid wall, generally made from nat-

ural stone bedded in mortar. (Other forms of solid wall construction, such as brick masonry 

and earth construction also exist in Scotland, as does occasional timber framing.) The cut-off 

point for traditional construction is often set to coincide with the end of the First World 

War, i.e. 1919, as this is seen as the date when the use of cavity wall construction started to 

become more common. Cavity walls can therefore be thought of as the first form of non-

traditional construction. There are large number of others on an ever expanding list, includ-

ing concrete post-and-beam construction, timber frame, external wall insulation on mason-

ry, light gauge steel frame etc. The change in construction systems, materials and practice 

were of course more gradual stretching back into the 19th century and on into the late 

1940s. However, 1919 is still a useful marker given the housing boom that then occurred to 

serve families of returning soldiers. 

The change from traditional to non-traditional construction, as a result of moving from solid 

wall to cavity wall construction, also meant a significant change in the hygrothermal behav-

iour of these walls. Traditional wall construction is therefore often associated with being 

more ‘vapour permeable’ than non-traditional construction. This will be described in more 

detail in section 3.1.3. In the next section, however, traditional and non-traditional building 

materials will be discussed first. 

3.1.2 Traditional and non-traditional building materials 

Traditional buildings were erected using many natural materials, such as stone and timber. 

These materials can therefore be referred to as natural traditional building materials. Natu-

ral materials are inhomogeneous and of varying quality, their properties and performance 

often depending on their source. Even where they are of similar type, great variations do 

exist: sandstone types, e.g., can be of varying degrees of hardness, with softer types gener-

ally preferred for carving work and harder stone types chosen where large structural loads 

needed to be carried. Natural materials are generally porous and permeable, which means 

that they have an open-pore pore structures, thereby allowing moisture transport. 

In the past, natural building materials were generally processed locally, using physical 

means, such as stone cutting or timber sawing, and did not receive any (major) chemical 

treatment. From the middle of the 19th century, manufacturing processes became increas-

ingly centralised and mechanised, leading to changes in the performance of some the build-

ing materials, by making them often more uniform in size, more homogeneous and strong-

er. Other innovations changed the aesthetics or added new hygrothermal benefits, such as 
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the glazing of bricks. These changes happened gradually, resulting in a large variety of mate-

rial types used in construction. This makes the distinction between traditional and non-

traditional often difficult: how does one say which brick is a traditional material and which is 

non-traditional? Perhaps, one should only talk of age and origin, appearance and perfor-

mance. 

The notion that modern building materials, or present-day variants of natural building mate-

rials, are always impermeable or at least more resistant to moisture is a fallacy. Indeed, 

some such variants are even more vulnerable hygrothermally than older forms of the same 

building material. For instance, the authors found that the water absorption of some ma-

chine-made bricks from the 1950s was twice that of some hand-made bricks from a hundred 

years earlier. Another example: a typical timber floor made from pine floorboards produced 

in the 20th century is likely to be more vulnerable to rot than those fitted in Victorian times, 

as the quality of timber used in construction has generally declined. Each (type and variant 

of a) material must therefore be assessed on its own merits. 

The variety of building materials has increased vastly over the last hundred years, and the 

chemical and manufacturing processes used today are extraordinarily varied. However, this 

does not mean that traditional building materials were all natural and therefore healthy. 

Long before the 20th century, many valuable building materials were chemically processed, 

such as paint, glass, lead and lime. These could therefore be called chemically processed 

traditional building materials. Some of these processes were noxious, even dangerous. For 

instance, it was common in Georgian townhouses that the owners would vacate their prop-

erties before repainting the interiors, letting them to poorer family until the chemical pong 

of the fresh paints had dissipated. 

Most chemically processed building materials, whether traditional or not, are quite homo-

geneous. Some are hygroscopic, others have partially or totally closed pore structures. Glass 

and lead, for example, are essentially impermeable to air and moisture. The pore structures 

of other materials remain, despite chemical processing, relatively inhomogeneous and 

open-pore, such as that of lime mortar. 

If age and origin are removed as identification criteria, it becomes clear that there is actually 

much overlap between the characteristics that can be used to define the terms traditional 

and non-traditional building material. For instance, glass and concrete are two materials 

that are strongly associated with 20th century construction, though both have their origins 

long before then. Both materials have changed incrementally over time: for example, the 

manufacture of glass in Britain went from cylinder glass to crown glass in the 19th century, 

to drawn glass in the 1920s, to float glass in the 1960s and then to a whole series of lami-

nated and tempered sheet glasses since then. Another example: John Smeaton made a ‘wa-

ter cement’ using hydraulic lime in 1756; ‘natural’ Roman cement was developed by James 
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Parker in the 1780s; ‘artificial’ Portland cement was formulated by Joseph Aspdin in 1824; 

and the idea of reinforced concrete was invented by Joseph Monier in 1849. 

Some building materials are obviously non-traditional, be it due to their hydrocarbon-based 

chemistry (e.g. polyvinyl chloride, expanded polystyrene), their composite nature (e.g. fibre-

cement boards, plywood), their shape or size (e.g. membranes, foils) or their unusual chem-

ical structure (e.g. mineral wool, wood fibre insulation boards). Some non-traditional mate-

rials are made from natural ingredients, though combined in novel ways (e.g. calcium sili-

cate insulation boards, lime concrete with hemp fibres). Overall, the hygrothermal proper-

ties of non-traditional materials are as varied as they are for traditional materials.  

Solid wall construction is often considered a key feature of pre-1919 construction and con-

crete and cavity walls considered as features of later walls, yet, by way of example, within a 

square kilometre in Dublin, one can find examples of solid wall houses built; 

 in the 1890s with rendered walls of a weak, inhomogeneous, pebble-based mass 

concrete (that may behave hygrothermally in a relatively similar manner to neigh-

bouring, rendered, solid brick walls of the same era) 

 in the late 1930s with three-course English bond brick walls 

 from the mid-1930s to late 1940s with denser mass concrete, using a graded aggre-

gate which included pebbles and laid in half metre lifts of varying density  

 in the 1950s through to 1970s with solid or hollow blocks, made of relatively homo-

geneous concrete to a modern standard featuring crushed aggregate. 

It is likely that one may find equivalent examples in many industrialised British cities. In 

comparing the four examples listed above, even the usual indicators of a change from solid 

to cavity wall construction, discussed in the next section, is unavailable to mark the end of 

the use of traditional building materials and the beginning of the use of non-traditional ma-

terials. One can really only talk of a transition. 

3.1.3 Traditional and non-traditional construction design 

The greatest difference between buildings of traditional and non-traditional construction 

design lies not so much in the building materials used, but in the way they are used to con-

struct the external envelope of a building – in the way they are joined together. The tradi-

tional form of wall construction in Scotland is the solid wall, normally made with stone bed-

ded in mortar and often up to 600 mm thick (including wall finishes). This form of wall con-

struction is permeable to moisture and does not contain any specific layer(s) stopping mois-

ture migration within the wall. Instead the wall prevents rain water from migrating all the 
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way through it simply due to its substantial thickness. Traditional construction could there-

fore also be described as construction designed to manage moisture migration through the 

wall, rather than preventing it (Hermann, 2013). Part of this management is that the wall 

allows vapour to evaporate, generally to both the outside and the room-side. 

While examples of cavity wall construction in common usage can be found as early as the 

mid-19th century for housing in places like Huddersfield in Northern England, its widespread 

development and adoption, supported by standards and related product innovation, dates 

to the early 20th century. Cavity wall construction features two masonry leaves, separated 

from each other by a vertical cavity, often vented. (For structural reasons, the two leaves 

are connected with metal wire or strap ties.) As cavity walls are often built with permeable 

materials rain water may penetrate the relatively thin outer leaf of the wall (to a greater ex-

tent in unrendered walls): the cavity’s primary function is to prevent rain water from migrat-

ing across to the inner masonry leaf. Technically it is termed a capillary break. It has a sec-

ondary value that the unfilled air cavity had in itself some thermal benefit. (In the late 20th 

century insulation batts, boards or beads were inserted into the cavity to improve its energy 

performance further, at times reducing the effectiveness of the capillary break.) 

The use of a cavity was therefore the central innovation of the new form of construction al-

lowing much less material to be used while still achieving a similar resistance to water pene-

tration through to the inside room surface as would be achieved by a much thicker, tradi-

tional solid wall of brick or rubble stone. In Scotland rendered blocks became the most 

common outer leaf in contrast to the greater use of brick outer leafs in Southern England. 

This difference is to do with the need for greater protection from driving rain in Scotland, 

the greater cost of laying brick and possibly also a sense that the brick aesthetic was anti-

Scottish. Wall ties, cavity closers and damp proof courses were invented to support this cen-

tral innovation while movement joints were invented as a response to the reduced ability of 

walls to absorb thermal expansion forces given the strong but increasingly brittle material 

they were made of. (The cost imperative of providing dry, warm housing as cheaply and 

quickly as possible was a major driver in the adoption of this form of construction after 

1919. The fact that cement manufacturers could guarantee uniform quality cement while 

the smaller craft producers of lime could not further hastened the change. It could be said 

the industrial, mechanistic ethos of ‘total war’ effected the choices made in the housing 

boom that followed the Great War’s end.) As this approach to moisture management is very 

different from that used in traditional construction design, cavity walls are referred to as the 

first significant form of non-traditional construction. 

These two very different approaches in wall design, i.e. traditional and non-traditional con-

struction, are illustrated in Figure 29. Although the two design approaches are very differ-

ent, this is not always apparent when looking at buildings. Particularly during the last dec-
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ade of the 19th century and the first half of the 20th century, both approaches were used 

simultaneously and cannot always be easily distinguished. A good example for how mixed 

this transition from traditional to non-traditional construction has actually been are the 

houses on the northern part of Skreen Road in Dublin. On this road, terraced houses brick-

faced solid walls with three-course English bond face semi-detached houses with stretcher-

bonded, brick-faced cavity walls. (Figure 30) Both sides of the road were built between 1936 

and 1937. Although of similar aesthetic and built with similar materials, the walls of the 

buildings either side of the road manage moisture in very different ways. The buildings with 

solid walls allow rain water penetration and prevent water penetration to the room face by 

the thickness of the single leaf construction. The buildings with cavity walls stop the water 

from penetrating though to the room surface by having a cavity that acts as capillary break. 

 

Figure 29 Cross sections through walls of traditional construction (left) and non-

traditional construction (right)  
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Figure 30 Two terraced houses either side of Skreen Road, Dublin, both built between 

1936 and 1937: Despite using the same aesthetics and materials, the left build-

ing is a solid masonry wall, whereas the right building has a cavity wall.  

3.1.4 Proposed nomenclature for the hygrothermal characteristics of buildings 

One may say that the defining approach of traditional construction is the management of 

moisture (predominantly rain water) by a range of strategies to ensure walls, floors and roof 

structures didn’t take on more moisture than their ability to quickly dry out. 

In contrast one can say that modern construction systems generally depend on blocking, not 

managing moisture. The outer leaf of the cavity wall, the render of a rendered solid con-

crete wall, or the cladding and glazing of more modern constructions are all generally ex-

pected to resist the full brunt of driven rain. From the perspective of water management it 

appears that strategies that used to be well understood and carefully practiced were put 

aside, much wisdom lost. 

It is interesting to note that some key advantages of traditional construction systems have 

regained popularity in certain circles in the last decade in Britain. For instance, the use of 

lime mortar, even in modern cavity wall construction, allows re-use of the bricks or blocks 

after demolition (thereby reducing the waste stream) and can remove the requirement for 

expansion joints. Other examples are the rediscovery of old biocomposite systems, like cob, 

and the invention of new, such as Hempcrete (lime concrete with hemp fibres) and straw-

bale, recover a tradition of crafted thick solid walls, while sequestering CO2. 
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In every case, a greater understanding of hygrothermal building physics and boundary con-

ditions would benefit both new buildings, conservation work and energy efficient retrofits 

rather than a focus on overly general categories such as traditional and non-traditional. The 

authors therefore propose a novel re-arrangement of terms and categories that may help. 

The main terms proposed to define construction approaches are ‘moisture managing’ and 

‘moisture blocking’. Tables 2, 3 and 4 below identify two different degrees of ‘moisture 

managing’ based on the level of vapour permeability and capillarity, while capillary broken, 

‘moisture blocking’ strategies are divided into vapour permeable and vapour closed. Fur-

thermore the three tables capture something of the different building cultures that use the-

se construction approaches: ‘traditional – predominantly moisture managing’, ‘modern – 

predominantly moisture blocking’ and ‘modern – predominantly moisture managing’. The 

reader can locate most common forms of construction in the various cells of these tables. 

It is hoped that an adoption of this more nuanced taxonomy may encourage designers and 

contractors to apply repair and retrofit measures to a building that lie within the same cate-

gory as it is in, e.g. installing capillary open insulants on capillary open solid walls, using va-

pour permeable paint on vapour permeable walls, only installing capillary breaks with great 

care where they are needed, etc. Risk assessment can greatly aid this transition. As an in-

dustry and culture we need to move to a building physics and care-centred appraisal and 

appreciation of our buildings: they are a remarkable inheritance. 

Traditional 

predominantly  
moisture managing 

 
Roofs Walls Floors 

M
o

is
tu

re
  

m
an

ag
in

g high vapour 
permeability 
and capillarity 

n/a 
Stone- and brick-
faced solid walls 

Flagstone or 
rammed earth 
floors 

low vapour 
permeability 
and capillarity 

Thatched roofs 
Rendered brick and 
stone-faced walls 

n/a 

M
o

is
tu

re
  

b
lo

ck
in

g 

vapour open 
with capillary 
break 

Traditional slated 
pitched roofs 

19th century stone 
and brick-faced cavi-
ty walls 

Suspended timber 
floors 

vapour closed 
with capillary 
break 

n/a 
Some rising walls 
include a slate DPC 

n/a 

Table 2 Predominantly moisture managing traditional construction systems 
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Modern 

predominantly mois-
ture blocking 

 
Roofs Walls Floors 

M
o

is
tu

re
 

m
an

ag
in

g high vapour 
permeability 
and capillarity 

n/a n/a n/a 

low vapour 
permeability 
and capillarity 

n/a n/a n/a 

M
o

is
tu

re
 

b
lo

ck
in

g 

vapour open 
with capillary 
break 

Modern flat roofs 
with ventilated zone 
below roof mem-
brane or cladding, 
on breather mem-
brane, vapour open 
insulation and AVCL 

Wet-plastered ma-
sonry cavity walls 
with insulation in 
cavity or internally, 
with DPC 

n/a 

vapour closed 
with capillary 
break 

Modern tiled 
pitched roofs with 
AVCL or vapour 
closed/foil-faced in-
sulants 

modern unvented 
flat roofs with foil 
AVCL, sandwich 
panels or composite 
panels 

Structurally insulat-
ed panels of orient-
ed strand board and 
rigid foam insula-
tion, with DPC 

light gauge steel 
frame with rain-
screen, vapour 
closed/foil-faced in-
sulants and DPC 

Reinforced con-
crete and rigid va-
pour closed insula-
tion on DPM 

Table 3 Predominantly moisture blocking modern construction systems 

Modern 

predominantly mois-
ture managing 

 
Roofs Walls Floors 

M
o

is
tu

re
 

m
an

ag
in

g high vapour 
permeability 
and capillarity 

n/a n/a n/a 

low vapour n/a Hempcrete, cob or n/a 
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permeability 
and capillarity 

strawbale walls ren-
dered and plastered  

Wet-plastered ‘no-
fines’ concrete block 
or autoclaved aerat-
ed concrete block 
walls with external 
wall insulation 

M
o

is
tu

re
 

b
lo

ck
in

g 

vapour open 
with capillary 
break 

Modern tiled 
pitched roofs with 
vapour permeable 
insulation, and vari-
able diffusion AVCL 
or no AVCL 

Timber frame walls 
with variable diffu-
sion AVCL, vapour 
open insulation, 
rainscreen and DPC 

Solid flooring made 
from lime concrete 
with lightweight 
aggregate as capil-
lary break, no DPC 

vapour closed 
with capillary 
break 

n/a n/a n/a 

Table 4 Predominantly moisture managing modern construction systems 

3.1.5 Impacts of building form on heat and moisture transport 

In Section 3, heat and moisture transport were discussed in relation to plane materials, i.e. 

materials of a uniform geometric shape. In practice, however, buildings are geometrically 

complex, a matrix of geometric and construction junctions connecting building elements. 

Obviously, this greatly influences heat and moisture transport at these locations. In this sec-

tion, one-dimensional temperature and pressure profiles are first described, following by a 

discussion of the two-dimensional effects and thermal bridging. 

3.1.5.1 One-dimensional temperature and pressure profiles 

Heat loss through a plane building component depends on the thermal transmittance, or 

U-value, of the component and the temperature difference, or temperature differential, 

across the component. (Section 2.4.5) The temperature differential is the driving force, or 

driving potential, for the heat flow; the U-value can be thought of as a regulator that con-

trols how quickly the heat will be transferred. The heat flow through a plane building com-

ponent, which can consist of a number of layers of different building materials, can be illus-

trated with a temperature profile, a graph plotted over the cross section of a building com-

ponent. (Figure 31) The different thermal conductivity (λ) of each layer in the component 

results in an uneven temperature change across the layers. Insulating materials have high 

temperature difference from one side to the other, while more conductive materials have a 

much smaller temperature change. The temperature profile of a building component is im-

portant for understanding the hygrothermal conditions within those parts which are air and 
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moisture permeable. As air movement normally entails moisture transport, low tempera-

ture locations tend to pose the risk of condensation, either on the material surface or inter-

stitially, i.e. within the component. 

 

Figure 31 Steady-state temperature profiles for an internally insulated solid wall, with 

the internal wall insulation shown as yellow layer.  

Whereas the temperature differential is the driving potential for heat transfer, the vapour 

pressure differential across the building component is the driving potential for vapour 

transfer. The vapour resistance (sd) of the component and the vapour diffusion resistance 

factor (µ-value) of each of the component’s layers are the regulators. Similar to tempera-

ture profiles, it is possible to generate vapour pressure profiles through a particular piece of 

building construction. The driving potential for liquid water transport by capillary action is 

the difference in water content in the component, i.e. the liquid water differential. The dif-

ference in relative humidity within the capillaries of the component’s materials is the driving 

potential for liquid water transport by surface diffusion. Finally, the moisture storage func-

tion of a hygroscopic material describes (among other things) the relationship between rela-

tive humidity and the amount of liquid water that will be adsorbed to the pore surfaces and 

is thereby available for surface diffusion. It is therefore also possible to plot a water content 

profile over the cross section of a building component. (Figure 32) 

 

Figure 32 Diagram showing vapour pressure profile (green) and water content profile 

(blue) across a wall.  
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Since heat, water vapour and liquid water are all driven by different forces, they can ‘move’ 

in different directions at different times within the same wall. However, because the forces 

driving these transport phenomena are coupled, retrofit strategies to address one issue may 

have unexpected effects on another. For example, insulating a wall internally reduces the 

heat transfer through it, but also leads, as a side effect, to higher relative humidity beyond 

the insulation, especially in winter when external temperatures are almost always colder 

than inside. The dewpoint is the temperature at which vapour will condense, i.e. 100 % RH. 

The phenomenon of the dewpoint occurring on the cold side of internal insulation is not as 

common as often thought, and is closely associated with non-hygroscopic materials, e.g. 

fossil-based insulants, and vapour retarding surfaces, e.g. certain paints, that have little or 

no ability to adsorb the vapour and in the process locally maintain or reduce the relative 

humidity. The inverse, hygroscopicity, is discussed in Section 2.5.1.5. The appropriateness of 

an internal insulation system should therefore not only be judged on its thermal perfor-

mance, but also on how well the system minimises moisture accumulation and, if condensa-

tion or indeed water penetration occur, how well it allows that moisture to disperse (within 

the building fabric) and eventually evaporate (either to the outdoor environment or back 

into the rooms). 

3.1.5.2 Two-dimensional effects and thermal bridging 

The discussion above, relating to U-values and to temperature and moisture profiles of cross 

sections of building fabric, is based on a uniform, not-bridged building component. In other 

words, it assumes that all of the layers within a building component are continuous and 

homogeneous and all heat and moisture transport is one-dimensional and perpendicular to 

the surface. In building practice, however, this is often not the case: most walls, for exam-

ple, are not completely uniform but can contain structural framing, windows and doors. Nor 

are they infinitely long: they join other components. 

Building components are often thought of as having a uniform thermal resistance. However, 

in reality, most construction contains localised areas which are of a higher or lower thermal 

resistance than the rest of the envelope. Such an area is called a thermal bridge. An exam-

ple of a thermal bridge is the studwork in an insulated timber-framed wall, where the studs 

have less thermal resistance than the insulated wall areas. Therefore, the studs are, in this 

case, thermal bridges. Thermal bridges that occur regularly within a component, such as the 

stud work used in the example above, should be calculated as part of the overall U-value of 

the building component. However, other irregular thermal bridges should be accounted for 

separately. 

Any linear junction where one building component meets another is potentially a thermal 

bridge, regardless if it is a geometrical junction, e.g. the corner of a wall, or a construction 
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junction, e.g. a window cill. (Figure 33) Typically, thermal bridges increase heat flow and 

lower indoor temperatures near the junction. These cooler internal surfaces, in turn, can 

result in an increased risk of surface condensation and mould growth (Section 3.2.2). 

Methods for the evaluation of thermal bridges are discussed in Section 4.6. The impact of 

thermal bridging is also illustrated in Section 5.4.3 in the case study that forms part of the 

second part of this report. 

3.1.6 Airtightness and thermal bypass 

Air movement and its impact on heat and moisture transport were already discussed in Sec-

tion 3.1.1. In the following, air movement will be discussed in a more practical building con-

text. A common form of air movement in a building is ventilation. All functioning ventilation 

systems should extract moist, vitiated air and supply fresh, oxygen-rich air, thereby improv-

ing air quality. However, air movement can also occur into, out of, through or within build-

ing envelopes. Still standing air is actually a relatively good insulant, but air that is moving in 

these areas will naturally have a moisture and thermal content. When uncontrolled this air 

can increase heat loss through the building envelope and result in unacceptable levels of 

interstitial moisture accumulation. Reducing unintended air circulation, i.e. convective cur-

rents, within the building envelope reduces the convective portion of heat transfer through 

it. Reducing unintended air movement through the building envelope, i.e. increasing its air-

tightness, reduces both convective heat and moisture transport. 

 

Figure 33 Photograph of an external wall with a room corner, floor junction and a bay 

window (left) and the corresponding thermal image (right): the thermal image 

shows the localised areas of lower surface temperature in blue colours. These 

thermally bridged areas include the outwards facing corner in the window 

breast, floor-wall and wall-window junctions and area where electrical sockets 

have been installed into the wall.  

In the following, terms such as filtration and ventilation will be defined first, before discuss-

ing the impacts of airtightness and thermal bypass (Section 3.1.6.3). 
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3.1.6.1 Air leakage and ventilation 

Intentional air movement through purpose-provided openings is termed design ventilation. 

If design ventilation is provided without constant mechanical supply or extraction it is re-

ferred to as natural ventilation, i.e. the supply of air without fans or depressurisation 

through grilles and extraction by intermittent fans or stack effect. Ventilation that requires 

constant mechanical input, such as provided by fans, is called mechanical ventilation. It can 

be designed to overcome the influences of non-mechanical means, e.g. wind pressure. Air 

movement transports heat and moisture through convection. The convection is therefore 

similarly referred to as forced convection in situations where mechanical means are used 

and natural convection in situations where mechanical means are absent. Ventilation and 

infiltration in buildings is examined in detail in the British Standard BS 5925:1991 (BSI, 

1991). (Air movement due to external air pressure or wind is, strictly speaking, a form of 

forced convection, but in a building context this air movement, even if unwanted, is general-

ly thought of as natural convection because it requires no electrical input.) 

Unintentional air movement is referred to as air leakage, or air filtration. Depending on its 

direction, air leakage can be either infiltration, i.e. air leaking into the building or exfiltra-

tion, i.e. air leaking out of the building. To reduce or prevent air leakage, building envelopes 

are increasingly designed to achieve higher levels of airtightness. 

3.1.6.2 Airtightness 

In buildings with low levels of airtightness and with little or no designed ventilation, air infil-

tration comprises an important, albeit haphazard and uncontrollable portion of the air sup-

plied to the building occupants, but also leads to increased heat loss and lack of comfort. 

Large rooms with high ceilings (a feature of many, but by no means all, traditional buildings) 

provide a greater volume to contain water vapour and other gases which can result in better 

indoor air quality than a similar room with equal air infiltration but a smaller volume. 

In buildings with high levels of airtightness (i.e. Q50 value < 5.0 m3/m2.hr) the required air 

exchange rates must be achieved by other means than occasional window opening and air 

leakage, e.g. through suitably designed, commissioned and maintained ventilation systems. 

Once again this requirement is of greater importance in smaller rooms, and above all small 

bedrooms (where CO2 can be released for many hours without occupants modifying condi-

tions by opening windows or internal doors). There is mounting evidence that the greater 

the level of airtightness achieved the less suitable natural ventilation becomes as the means 

by which to deliver acceptable air quality (ref: Sharpe, 2014 and Aereco, 2010). The best 

ventilation systems should provide good air quality at all levels of airtightness without un-

due heat loss, through modulated supply and extract of air or the use of heat recovery in 
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ventilation systems. When specified and installed well there need be little visual change and 

no loss in heritage value. 

Some forms of present-day construction are prone to air infiltration due to a higher number 

of poorly controlled junctions. Examples are partial-fill cavity wall and open-panel timber 

frame construction, when built without a marked focus on airtightness, and, in every case, 

unsealed blockwork walls, internally finished with mechanically fixed insulated plasterboard. 

(Doran, 2000; Wingfield et al., 2011) On the other hand, some forms of older construction, 

e.g. mortar-bedded stone walls with render and plaster finishes, can be inherently airtight. 

Nowadays it is increasingly usual that continuous airtightness membranes or taped racking 

boards are used in timber-framed walls to improve the long term airtightness. In traditional 

wall construction, wet-applied plaster and render finishes perform the same role. Old, un-

improved windows and chimney stacks are often the least airtight components of the build-

ing envelope of historic buildings. The general aims of reducing air leakage and increasing 

airtightness raises a host of questions for traditional buildings: How will internal levels of 

relative humidity change, could there be an impact on interior decoration and objects? 

What will the new levels mean for the risk of mould growth? How will vitiated air be re-

placed with the fresh air needed by building occupants? It is clear that reduced air leakage 

and increased airtightness impose a greater requirement for well-designed and well-

functioning ventilation, particularly in locations where high vapour loads are produced, e.g. 

bathrooms, kitchens, utility rooms. Yet, insulating retrofit work is all too often installed 

without even giving the slightest thought to the resulting ventilation requirements. 

3.1.6.3 Thermal bypass 

The term thermal bypass describes the unintended thermal impact of combined impact of 

natural and forced convection upon thermal performance of building fabric. Siddall (2009) 

describes thermal bypass, according to Harrje et al. (1986), as 

heat transfer that bypasses the conductive or conductive-radiative heat trans-

fer between two regions. Defined in this manner, convective loops, which can 

include both air infiltration and wind washing, constitute a form of thermal 

bypass. It should be recognised that the term ‘thermal bypass’ is being applied 

to largely unfamiliar, and often unregulated, heat transfer. Furthermore it is 

an acknowledgement that air movement can lead to a significant increase in 

the heat loss when compared to predicted values … This means that even 

when the designer thinks that a design has addressed the performance re-

quirement; it is very likely that it has not. 

(Siddall, 2009, p. 1) 
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Examples of thermal bypass include large-scale air movement through gaps in the building 

envelope, for example where air barriers have been breached; but also small-scale air cy-

cling between linked voids within the envelope; air movement driven across insulation or 

through loose fibrous insulation; and wind wash. The latter is air movement, driven by wind 

pressures, resulting in wind passing through or behind the thermal insulation within building 

envelopes. 

Different forms of thermal bypass are illustrated in Figure 34. In this figure, the examples 

(a), (c), (d) and (g) show convection through the concerned construction, including convec-

tion through the open-pore pore structure of lightweight insulating material, such as miner-

al wool quilts. The classic case of this type of convective heat loss is quilt insulation extend-

ing over the timber wall plate at an eaves-wall junction, where no attempt has been made 

to separate the insulation from the adjoining eaves: air movement, driven by wind or exter-

nal air pressure differences on either side of the building, is pulled into the eaves, through 

the perimeter quilt insulation, through the attic void and out the other side, whipping warm 

air out of the exposed areas of attic insulation in the process. Deseyve and Bednar (2005) 

estimated fluctuations in the calculated U-value at the eaves as great as 660 % for wind 

speeds of 7 to 9 m/s for this process. The authors have witnessed a case of air movement 

drawn downwards from a cold attic through 300 mm of new, carefully laid quilt insulation, 

woven intumescent hoods and the openings of recessed down-lighters into a bedroom be-

low, to the great discomfort of the occupants. 

 

Figure 34 Examples of thermal bypass through or within building envelopes (indoors is on 

graphic’s right side): The internal air barrier is compromised only in cases c, d 

and g. In the other cases, even with proper air barriers and good airtightness, 

air movement occurs within the building fabric, causing convective heat loss. 

(Siddall, 2009 / Image © AECB) 
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Rather than passing through lightweight, non-woven materials, however, thermal bypass 

tends to occur as thermal convection around solid materials, as illustrated in example (f) in 

Figure 34. The classic case here is that of convection loops circulating air around rigid insula-

tion boards within a cavity wall, only partially filled. Lecompte (1990) raised concerns about 

the actual thermal performance of partially filled cavity walls, by establishing through labor-

atory tests that any gap on the warm side of insulation could result in a significant reduction 

in thermal performance: for a 10 mm wide gap between insulation boards, a void as small as 

7 mm behind the insulation resulted in an 80 % increase in heat transfer; 15 mm resulted in 

an increase of 180 %. Because this convective heat transfer occurs within building compo-

nents, it has the effect of resulting in a higher λ value. In other words: it is an increase of the 

heat transfer through a ‘solid’ material, therefore the impact of air movement is recorded as 

increased conduction. 

There are two notable cases of thermal bypass that have led to changes in guidance in the 

UK. Firstly, Wingfield et al. (2011) found that, at a housing development in Stamford Brook, 

stack-driven thermal bypass, measured within an uninsulated party wall of cavity wall con-

struction, was so extreme that what had previously been considered negligible had in fact a 

magnitude equivalent to a U-value of 0.6 W/(m2
∙K). The case is explained further in Figure 

35. This particular form of thermal bypass is also illustrated with the examples (e) and (h) in 

Figure 34. The discovery led to changes in Approved Document L for dwellings. Secondly, 

Ward and Sanders (2007) found that, in a typical British house, 20 % of the heat loss is into 

attic spaces, of which circa 80 % is due to air leakage, including vapour. This led Sanders, 

(2006a) to state, in BRE IP 5/06, that hygrothermal numerical evaluation not steady-state 

interstitial condensation analysis should be used when assessing traditionally insulated lofts. 

Importantly while occurrences of thermal bypass are difficult to resolve when found on site, 

they can be minimised by careful design in the planning process and careful installation of a 

continuous air barrier. 
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Figure 35 On-site investigations at a housing development in Stamford Brook, London, 

found that convective heat loss occurred, on one hand, due to heat transfer 

from rooms either side of a party wall, with a convection current in the wall’s 

cavity causing the air to rise to the colder, uninsulated attic space (left), and, 

on the other hand, due to air movement behind mechanically fixed plaster-

board dry-linings. (Wingfield et al., 2011 / Image © DCLG) 

3.2 Moisture in building envelopes 

Moisture is one of the main reasons for material decay and contributes to health issues 

within buildings, such as mould growth. In this section, three relevant moisture sources are 

identified: indoor vapour (Section 3.2.1.1), rain water (Section 3.2.1.2) and ground water 

(Section 3.2.1.3). Moisture-related fabric deterioration and health risks will thereafter be 

discussed in Section 3.2.2, such as wood decay, caused by rot; surface spalling, caused by 

freeze-thaw action; and mould growth as a health risk. 

3.2.1 Moisture sources 

3.2.1.1 Indoor vapour 

Indoor vapour is gaseous water dispersed in the indoor air and is the form of moisture most 

often assessed when considering internal insulation retrofits. Vapour transport by convec-

tion or diffusion (Section 2.5.2 and Section 2.5.3 respectively) results in the risk that the 

transported vapour might condense into liquid water if moved to an area with a tempera-

ture at or below the dewpoint. The amount of indoor vapour depends on the occupancy and 

use of a room: the living room of a flat occupied by one person has generally a lower indoor 

vapour load than a living room occupied by a five-person family. A bathroom used regularly 

for bathing or showering will generally have a higher vapour load than a living room. Table 5 

below lists the vapour loads produced by some typical household activities. The table shows 
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that vapour loads can vary significantly. Due to this, the hygrothermal assessment for a liv-

ing room is generally not transferable to a bathroom, nor is an assessment for a bathroom 

in a single-occupancy flat transferable to a bathroom used by a family of five. 

Activity Moisture produced 

Cooking (3 meals) 0.9 - 3.0 kg/day 

Clothes washing 0.5 - 1.8 kg/day 

Clothes drying (indoors) 2.0 - 5.0 kg/day 

Baths / showers 0.2 - 0.5 kg/(day∙person) 

 

 

that means, - for a single person  

 - for five persons  

0.2 - 0.5 

1.0 - 2.5 

kg/day 

kg/day 

Perspiration and respiration of building occupants 0.04 - 0.06 kg/(hour∙person) 

 that means,  - for a single person for 24 hours  

 - for five persons for 24 hours  

0.96 - 1.44 

4.80 - 7.20 

kg/day 

kg/day 

Table 5 Indoor vapour loads, as typically produced by household activities and, for 

comparison, by building occupants (Sanders, 2006b, tab. 7.1) 

Vapour diffusion in building envelopes 

In predominantly cool climates, such as that of the British Isles, interior spaces are main-

tained at warmer temperatures than the outdoor air for much of the year. This warmer in-

door air has the capacity to hold more vapour: the activities described above provide ample 

quantities of such vapour. The concentration of vapour molecules results in a higher vapour 

pressure within the building than outside for most of the year, driving vapour outwards 

through the thermal envelope. (It should be emphasised that most of this vapour is not 

from the room it was already in the building materials. Most vapour leaves internal volumes 

through ventilation and the opening and closing of windows and doors.) At the same time 

even in Spring, but obviously more often in summer, periods occur when the external sur-

face temperature of a wall or roof is far higher than the room temperature due to solar ra-

diation – this temperature differential can reverse the direction vapour is moving through 

the thermal envelope temporarily. Thus, the combination of the vapour pressure and tem-

perature differentials are the driving force for vapour transport by diffusion through the 

thermal envelope. (Section 2.5.3.1) 

Vapour moves through all materials unless they are truly vapour impermeable: the latter 

group is surprisingly small. The amount of vapour that permeates into and migrates through 

a vapour permeable material varies depending on its vapour diffusion resistance factor (Sec-

tion 2.5.3.1) and thickness. A more vapour-closed material, i.e. one with a high µ-value, en-

sures less vapour diffusion than a more vapour-open material. The thicker a material, the 
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more difficult it is for vapour to migrate through. Therefore, a material that has a high µ-

value and is of great thickness will ensure even less vapour diffusion. 

In the context of building envelopes, because there is also a temperature profile through the 

building envelope which decreases as it gets closer to the cooler outside air, the location 

where the vapour transport ceases may be at a temperature much lower than that of the 

room air. At lower temperatures, the relative humidity associated with the vapour is much 

higher. If the temperature is at or below the dewpoint, the vapour can condense into liquid 

water within the building envelope. 

There are a number of ways to reduce vapour diffusion ingress into the building envelope. 

First and foremost, adequate ventilation can reduce the interior vapour load, thereby reduc-

ing the vapour pressure differential which drives the diffusion. While many homeowners 

open bathroom windows to expel the high vapour load created by showering they may ac-

tually be providing a path for air to enter the dwelling and leave through an opening on a 

side of the dwelling where the outside air has a lower air pressure. In doing so moist and 

even mould laden air can get deposited within the dwelling far from the moisture source. 

Therefore the only reliable way to reduce the interior vapour load in a ‘wet’ room is through 

the use of extract ventilation (whether or not a window is open). The best extractors run 

constantly or are humidity triggered (and will be quiet enough that occupants will use 

them). Generally fresh air supplied from outside has a lower vapour content and mixes with 

the indoor air, thereby diluting the vapour to a lower concentration. However, while ade-

quate ventilation can reduce the vapour pressure differential, it is unlikely that the ventila-

tion will eliminate the vapour pressure differential entirely. The vapour load of the room will 

likely remain higher than that of the surrounding building fabric. 

Since vapour diffusion is stopped at the surface of a layer of a material with high µ-value, 

one approach to avoid a higher vapour content locally, even to the point of interstitial con-

densation occurring, is to avoid such impermeable layers and allow the vapour to pass com-

pletely through (all layers of) the building envelope to the outside. This approach requires 

careful material selection and some measure of weather proofing against wind and rain 

(whether that’s a good render or rainscreen). Traditionally such a wall featured a wet plas-

tered finish internally that acted as an air barrier but not a vapour barrier. An alternative 

approach is the use of an air and vapour control layer (AVCL) to prevent the vapour from 

reaching cooler location within the building envelope. AVCLs can either be installed as an 

independent layer, e.g. polythene or polyamide membranes, or be part of a composite con-

struction product, e.g. foil faced phenolic foam panels taped together. In all cases an AVCL 

must be continuous. However, AVCLs can restrict the evaporation of vapour back into the 

room. (Binder, Zirkelbach and Künzel, 2010) Because of this, AVCLs on certain masonry walls 

can create more problems than they solve. These effects are illustrated in the case study of 
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this report. (Section 5) In a situation where interstitial condensation is considered a high 

risk, construction materials with high capillarity can be used to redistribute the condensate 

in order to prevent interstitial moisture accumulation over time. This situation occurs in tra-

ditional solid wall construction, in which the dewpoint lies somewhere in the middle of the 

wall thickness. 

Vapour diffusion has long been the primary focus of hygrothermal risk assessment of build-

ing envelopes. (Section 4.4.3.1) This is partly due to the fact that it is relatively easy to calcu-

late assuming one-dimensional vapour pressure differential and no other hygrothermal ef-

fects or short term events. Other moisture sources affecting the building envelope are much 

more difficult to assess. As will be seen, ignoring other sources, such as rain water and 

ground water, can often result in an over-simplification that can mask actual hygrothermal 

risks. 

Vapour convection in building envelopes 

Vapour convection is vapour transport by convective air currents. (Section 2.5.2) These cur-

rents occur within building spaces, but can also occur within the building fabric of some 

forms of construction. Within building envelopes, these currents are primarily the result of 

wind pressure, stack effect and/or building pressurization by mechanical ventilation. 

The concern surrounding vapour convection is similar to that of diffusion: the interior air 

with higher vapour content can be transported to a location within the building envelope 

where the temperature is cooler, causing the relative humidity to increase and potentially 

condensation. However, air movement transporting vapour by convection occurs much 

faster than diffusion and can therefore be a much larger source of moisture. 

Vapour convection as a moisture source is caused by air movement through gaps and cracks 

in building construction. This convection is controlled by the airtightness of the structure. 

Airtightness is concerned with air movement in both directions: infiltration or exfiltration. 

Since outside air is generally cooler and drier, i.e. contains less vapour, infiltration is of no 

concern as a moisture source and may actually help to dry building fabric where it occurs. In 

cool climates, vapour convection is concerned with exfiltration only. 

The actual amount of air leakage, however, is not directly related to the risk of moisture ac-

cumulation due to convection. In fact, the locations of highest leakage are often not the ar-

eas of primary concern, as these locations are generally larger, more direct opening, in 

which warm indoor air leaks though rapidly. This rapid air movement results in a significant 

loss of energy, but, because the air does not have time to significantly cool down before it 

reaches the outside, the surface temperatures at the opening are actually warmed by the air 

and the dewpoint is often not reached until after the air leaves the building envelope. In-
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stead, it is the smaller, more tortuous cracks in the building envelope that are more suscep-

tible to vapour condensing within them, because the air leaking through spends considera-

ble time in these colder portions of the building envelope. Figure 36 shows a simplified rep-

resentation of these different types of gaps and the air movement through them. 

 

Figure 36 Air leakage through gaps and cracks in the building envelope: whereas through 

large gaps (left),air escapes rapidly, in small gaps with tortuous air paths, va-

pour can condense, as it is transported more slowly through the colder parts of 

the building fabric. (Künzel, 2011 / Image © Fraunhofer-Gesellschaft) 

The simplified diagram in this figure represents conditions commonly found in building en-

velopes. An example for this, in the context of an internal insulation wall retrofit, is the air 

gap behind rigid insulation boards applied to a wall with mechanical fixings. Any gaps be-

tween the boards or poor airtightness seals around openings, such as electrical outlets, 

could allow air movement into this narrow cavity. If the temperature in these cavities 

reaches the dewpoint, the vapour condenses, potentially causing moisture-related fabric 

deterioration. If the vapour in the cavity accumulated above certain threshold levels, mould 

growth could occur. (Section 3.2.2.1) 

Continuing the example above, these rigid insulation boards often incorporate a foil facing 

as a vapour barrier. However, if vapour convection, which carries more moisture, is able to 

bypass the entire board, this foil layer becomes ineffective as an air barrier. 
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To prevent all vapour convection into the building envelope would require the elimination 

of all air leakage through even the smallest gaps and cracks with a perfectly sealed air barri-

er. 

While better detailing and workmanship may considerably improve the air-

tightness … field observations indicate that it is impossible to achieve a per-

fect air barrier in building practice. 

(Künzel et al., 2012) 

Moisture transport by vapour convection may be reduced by good workmanship and in-

creased attention to airtightness, but it cannot be eliminated completely in practice. There-

fore, condensation due to vapour convection must be allowed to dry out to avoid accumula-

tion. In this regard, vapour barriers can sometimes do more harm than good, because they 

prevent vapour from evaporating to the room by diffusion when outside surface tempera-

tures are higher than the room’s ambient temperature. This is common in summer (thus is 

often called summer diffusion) but it can happen due to thermal radiation on sunny days at 

any time of the year. 

This moisture accumulation by vapour convection can be illustrated by comparing the mois-

ture behaviour of three examples of a roof construction. The construction is the same in all 

examples, except that the AVCLs installed are of different vapour resistance: 100 m, 2 m and 

variable diffusion. (Figure 37) The AVCL with the highest resistance, sd = 100 m, leads to 

moisture accumulation over time, because it prevents summer diffusion. The other two 

AVCLs allow the drying out of moisture from the construction, albeit at different rates. This 

example demonstrates the importance of understanding the dominant moisture source in a 

building component and the need for the use of suitable materials and construction design. 

 

Figure 37 Comparison of  three different AVCL options 
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3.2.1.2 Rain water and wind-driven rain 

One of the functions of a building is to provide shelter from rain and wind. Almost every 

part of a building envelope will come into contact with rain water (or ground water). Con-

struction design generally attempts to reduce the quantities of rain water coming into con-

tact with external wall surfaces, for example by using rain water goods, such as gutters, 

downpipes and drainage, to directly discharge water from roof areas and/or by sheltering 

walls with overhanging eaves. These measures offer good protection from rain fall, at least 

as long as it falls more or less vertically.  

However, rain fall often concurs with wind speed, resulting in the rain falling obliquely, ra-

ther than vertically. Rain fall which is given a horizontal velocity is called wind-driven rain, 

or driving rain. As a result of wind-driven rain, larger quantities of rain water will come into 

contact with external wall surfaces, resulting in increased moisture penetration. The impact 

of wind-driven rain are is difficult to predict, because of its dependence on wind speed, 

building geometry, adjacent landscape etc. To estimate the wind-driven rain load, assump-

tions are made to conservatively predict the worst case, accounting for the varying influ-

ences. 

Wind-driven rain is the most important moisture source affecting the hygro-

thermal performance … and durability of buildings facades. 

(Blocken and Carmeliet, 2010, p. 1079) 

When rain water comes into contact with a wall, the pores in their external surface become 

completely filled, and moisture transport by capillary action becomes possible. This 

transport mechanism is of particular importance for solid walls of permeable construction, 

especially in climates with significant levels of rain fall and wind speed, like most of the 

north and west of Ireland and of Scotland. 

If present, liquid transport may dominate vapour diffusion by some orders of 

magnitude. Therefore it has to be considered carefully when liquid water has 

an impact on the building component, e.g. when wind-driven rain hits … a sol-

id stone wall made of natural stone. 

(Künzel and Karagiozis, 2010, p. 50) 

That wind-driven rain is of particular significance for at least some parts of British Isles is 

well established. In the 1950s, the Building Research Station (later Building Research Estab-

lishment and now BRE) was at the forefront of researching the impact of wind-driven rain 

on buildings. (Hens, 2010, p. 2) Publications from as early as the 1950s and 1960s show that 

wind-driven rain was considered a particular concern (e.g. Lacy, 1966). 
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Figure 38 shows a map from 1966 of the British Isles with the hatching illustrating three dif-

ferent zones of wind-driven rain intensities: sheltered, moderate and severe. The numbers 

stated on the map provide an even more detailed picture, with higher numbers indicating a 

higher ‘wind-driven-rain index’ and therefore higher levels of wind-driven rain. The map 

shows that wind-driven rain is of far greater significance in the west of Ireland and of the 

UK, especially at coastal regions. The middle of the west coast of Scotland is particularly ex-

posed to the impact of wind-driven rain. These areas experience potentially higher levels of 

wind-driven rain than anywhere else in Europe. (Hermann, 2013) 

Understanding the significance of the wind-driven rain and its impact on buildings can be 

critical for hygrothermal assessment. How to factor wind-driven rain into such assessments 

is discussed in more detail in Section 5.2.1.2. (It is worth noting at this point that the cur-

rently available information about wind-driven rain levels for the UK (e.g. BSI, 1992; Stirling, 

2002, fig. 30) is still based on data sets from between the 1950s to 1970s, whereas Met 

Éireann, Ireland’s meteorological service, has recently published an updated wind-driven 

rain index map, based on more recent climatic data. (Walsh, 2010) 

The degree of rain water penetrating into walls, however, does not only depend on the 

quantities of rain water coming into contact with a wall, but also on the condition of its fab-

ric. Particularly the condition of the exterior wall surface can have a significant impact: 

where exposed masonry walls are not properly maintained, e.g. lacking re-rendering or re-

pointing, they are more likely to allow rain water penetration. During a rain event, the dif-

ferential of the water content between the sheet of water coating the surface and the com-

parably dry internal wall core is very large. Therefore, capillary action will quickly draw wa-

ter into the larger pores of the material. After the rain event, the water will be redistributed 

within the wall, moving from wetter to drier areas, as water is drawn from the large pores 

into the smaller pores. In this case, the differential is much smaller, i.e. the differences are 

more like varying degrees of dampness rather than wet versus dry, and the pores are much 

smaller, thereby capillary moisture transport is slower. 

Moisture transport through capillary action requires water-filled pores. Once the water in 

the pore structure is redistributed as far as it is possible within the small pores, there will 

not be enough water left to continue filling the pores further. Moisture transport beyond 

this point can therefore only occur by vapour diffusion or surface diffusion (though the di-

rection may change). These transport mechanisms are both much slower than liquid 

transport by capillary action. As a result, it takes much longer for the moisture to work its 

way out of a wall than it does for the wall to be initially wetted. Indeed, there might be situ-

ations where rain water, having penetrated a wall, will never fully evaporate, leading to 

moisture accumulation in the wall over time and to rain water possibly reaching internal 

wall faces. Obviously, the more rain water comes into contact with the building envelope 
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and the more moisture permeable its construction is, the more substantial the thickness of 

the building envelope needs to be to prevent the liquid water from being transported all the 

way to the interior wall surface. The high levels of driven rain in Scotland is one reason why 

traditional walls tend to be much thicker (generally approx. 600 mm overall), compared to 

brick walls in the dryer southeast of England (approx. 300mm thick). 

To avoid moisture accumulation, the wall needs to be able to dry over time through evapo-

ration, fed by the relatively slow processes of vapour diffusion and surface diffusion. Since 

these processes are affected by evaporation and relative humidity, the temperature of the 

wall is of critical importance. Internal insulation retrofits often change the temperature of 

the wall drastically by reducing the heat transfer from warmer interior spaces. They also add 

layers of sometimes impermeable materials that restrict the vapour diffusion and drying 

toward the interior space. Unless care is taken, the overall drying ability of the wall can be 

reduced significantly by an internal insulation retrofit. Where walls have a high moisture ab-

sorption, the reduced drying can also lead to increased, and potentially damaging, moisture 

levels. It is particularly in these situations that hygrothermal assessment can provide critical 

insights for the design of retrofit measures. 
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Figure 38 “Driving-rain index map of Great Britain, based on annual mean wind-speed 

and rainfall (m2 sec-1)” (Lacy, 1966, p. 22, fig. 19 / Image © Building Research 

Establishment) 
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3.2.1.3 Ground water and rising damp 

Rising damp is the common term for the slow upward movement of moisture 

in the lower parts of walls and other ground-supported structures. It is an im-

portant cause of wetness in buildings. It is a cause of decay and deterioration 

in standing stones, monuments and at archaeological sites.  

Hall and Hoff (2007), p.1871 

Gravity has a weak or negligible effect on how moisture moves within structures that are 

built of common materials like stone, mortar and brick. Capillary forces are usually domi-

nant, being responsible for (a) most of the uptake from external sources - whether the 

ground, the atmosphere (driving rain at the wall surface), leaks and so on - and (b) most of 

the migration of moisture within the structure. (See Section 2.5.4 for more on capillarity.) 

Eventually moisture leaves the structure through evaporation. All these processes fall within 

the theory of Unsaturated Flow which has particular importance when assessing the magni-

tude of rising damp.   

Key factors that determine how high rising damp can manifest are the: 

 Level of moisture available (under UK conditions moisture is generally available to 

walls in direct contact with the ground); 

 Sorptivity of the wall materials (as this affects how much moisture is wicked); 

 Wall’s thickness (as this affects how much can be stored); 

 Area available for evaporative drying; and 

 Immediate micro-climate on either side of the wall (as this effects the drying poten-

tial).  

The role of evaporation in drawing a continuous flow of water through the structure is 

termed ‘evaporative pumping’. The analogy of a pump is well used. It has been calculated 

(Hall and Hoff 2007) that one litre of water per day, per metre length of wall, can move 

through a 150mm wide wall in London (where rising damp has manifested to a height of 

610mm above ground level) in this way. This equates to the movement of about 350 litres 

of water per year: a remarkable effect. 

 



Historic Environment Scotland Technical Paper 15 

Page 89 of 256 

 

Figure 39 Southeast-facing wall of the El Merdani Mosque in Cairo. The measuring staff is 

3m high. (Prof. Berndt Fitzner, Hall et al., 2010, p. 14, fig. 10 / Image © The 

Royal Society Publishing) 

It is often said that 1 - 1.2m is the highest point to which rising damp will rise. This is largely 

true in the UK simply because few walls tend to be thicker than 600mm (and the London 

brick wall mentioned above was very much narrower). Rising damp can reach greater 

heights on thicker walls (for instance a thick castle wall) as their greater moisture storage 

capacity requires a greater surface area to dry through evaporatively. The wall of the El 

Merdani Mosque wall in Cairo (see Figure 39) has been extensively studied: it is 1.67m thick 

and manifests rising damp up to three metres high. 

Ground water chemical composition is extremely variable, but even relatively 

clean waters generally have some soluble salts, at the level of 10-100 parts per 

million. Over many years these accumulate in the wall, since once in the wall, 

they generally stay there.  

C. Hall, private correspondence with authors, August 2015 

According to Hall, these soluable salts are typically sodium chloride, sodium sulfate, potassi-

um sulphate, sodium nitrate; and (somewhat less soluble but also neutral) calcium sulfate 

(i.e. gypsum). They are relatively neutral in terms of pH. Nonetheless when ground water 

meets the first mortar joints it experiences what Chris Hall describes as a ‘chemical shock’ 
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due to the mortar’s highly alkaline nature. The water dissolves or leaches lime constituents 

(calcium hydroxide and calcium carbonate) from the lowest joint. In doing so, the water be-

comes more alkaline, and has a less ‘aggressive’ reaction at the next mortar joint. Over time 

the lower joints are fully leached and the chemical shock passes to successively higher 

joints, transporting the lime and salts in solution further up the wall.  

…One can say definitely that the zone where highly-soluble salts (like sul-

phates, chlorides, nitrates) will appear is in the wet/dry zone, and not lower 

down where the wall is permanently damp. These salts are deposited as solids 

when the wet/dry zone dries back in the spring/summer, when the evapora-

tion is more intense for climatic reasons. The water evaporates away but the 

salts are left in the wall. They may appear as surface efflorescence, but can al-

so be deposited deep below the surface within the pores of the masonry mate-

rials. As crystals grow within the pores, they may exert forces on the pore 

walls which cause mechanical damage. The effect of a multitude of tiny salt 

crystals all trying to grow within the constraints of the pores adds up to a 

bursting pressure which may exceed the strength of the material (brick, stone 

etc.). Hence spalling or powdering. In the autumn/winter when evaporation 

diminishes, the wet/dry zone is re-wetted, and some of these salts may re-

dissolve, and in addition further dissolved salts move up from lower in the 

wall. In the following spring/summer, the cycle repeats. It is the cyclic nature 

of the seasonal wetting and drying that causes the problem. 

Ibid. 

The impact of this cyclical nature is significant. The so-called potential evaporation in the UK 

can be many times greater in July than in December due to micro-climatic conditions that 

favour evaporation: Hall calculated that it was ten times greater in one case - a considerable 

difference. Greater evaporation brings greater solid salt accumulation and greater risk of 

damage to the molecular structure of the masonry. Contrariwise in Winter the forces exert-

ed by salt crystals on some cell walls may lessen as the increasing ground water content dis-

solves crystals; however the risk of freeze-heave due to high water content in cells 10 - 

20mm behind the external surface may increase. Due to higher water content dissolving sol-

id salts, efflorescence (white salty deposits pushing out from the wall surface) may also re-

duce in extent during Winter, yet whitish stains (of calcium carbonate) may appear in that 

season that are not evident in Summer, as the micro-climate allows less surface evapora-

tion.  
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Figure 40 Diagram showing a wall cross-section with cyclical seasonal nature of rising 

damp and associated salt migration 

The drawing in Figure 40 is an attempt to visually represent the cyclical nature of water con-

tent, evaporation and visible efflorescence from Summer to Winter. Note that the authors 

have used colour to emphasize the seasonal variability in relative humidity (which influences 

whether moisture transport is predominantly through vapour and surface diffusion or 

through capillary action). Hall’s wet/dry zone is equivalent to the full area where accumulat-

ed salts are shown. The drawing is simplified: (depending on the type of masonry and mor-

tar) salt accumulation would likely occur in mortar joints first, not in the uniform pattern 

shown there. 

The study of rising damp is still developing. Simple mathematical models (such as shown in 

Hall and Hoff (2007)) can estimate the evaporative pumping effect with reasonable accuracy 

and Fraunhofer IBP has successfully modelled the effect using Wufi 2D, the two-dimensional 

numerical simulation tool of the WUFI suite of software (Holm, A., Künzel, H.M. 2000). 

Overall however Hall is of the view that there have been insufficient systematic field obser-

vations and theoretical analysis to be certain of the impact of hygrothermal, chemical and 



Historic Environment Scotland Technical Paper 15 

Page 92 of 256 

molecular aspects. This is complicated by the fact that each case will be different due to the 

molecular structure of the various materials in a wall (determining sorptivity etc.), the 

amounts of salts present (from ground water, mortar, stone or brick) and how acidic the 

groundwater itself is.  

3.2.1.4  Remediating rising damp 

It is often noted that it is difficult to replicate rising damp in the laboratory. 

The reasons for this include difficulties in producing a suitable mortar which is 

sufficiently sorptive. In older walls, it is likely that mortars become more sorp-

tive as a result of the prolonged passage of water through them over long pe-

riods of time. Fresh mortars, particularly those containing cements, act as a 

barrier to rising damp  

Hall and Hoff (2007), p. 1877 

The difficulty in replicating rising damp may explain why many walls built without a damp 

proof course never experience rising damp. It may equally be why it is harder to rid walls of 

the condition once it has been well established – the material properties of the masonry in 

the latter walls have been altered, making them more and more effective evaporative 

pumps over time. Recent research (Rirsch et al. 2011) is establishing the altered characteris-

tics of these mortars to allow better replication. 

It is worth remembering that evaporative pumping of ground water of an extent that is con-

sidered problematic rising damp is quite uncommon in well-built, traditional buildings in the 

UK. When faced with an apparent case, the wall and any proposed solution should first be 

subjected to careful examination to see if another potential cause can be identified first. The 

cause of dampness may in fact be a broken drain (above or below ground) or perhaps the 

consequence of a foot path that has risen over time and deposits water directly into the 

wall. Careful examination and good maintenance can cause many cases of ‘rising damp’ to 

abate. Beyond this specialist advice from qualified professionals should be sought. 

Be aware of companies that offer advice or free surveys while also selling the technical solu-

tion! There are many cases of expensive measures being applied that show little under-

standing of the hygrothermal and chemical forces in play. Solid walls naturally dry through 

evaporation through both faces, therefore tanking (i.e. sealing) one side of a wall will (a) re-

duce overall evaporation thereby increasing the wall’s moisture content and (b) force evap-

orative drying to occur through a greater area on the other side. As moisture content behind 

the surface of that side rises the likelihood of freeze-heave and mortar decline may also 

grow (as a direct consequence of this moisture blocking approach). In severe cases the rising 

damp may also push the tanking off the wall. Equally, sealing both sides of the wall to a cer-
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tain height will likely cause the rising damp to manifest higher up the wall: inadvertently the 

tanking creates a large volume of wall that can become saturated (literally a ‘tank’). 

Installing a DPC to prevent capillary rise (a key feature of moisture blocking, non-traditional 

construction) may be judged a necessary step in severe cases, but it is not the solution to all 

cases of rising damp and certainly should not be considered a pre-requisite for solid walls 

that to date have manifested no signs of dampness (whether they are to internally insulated 

or not). There are physical, injected and electro-osmotic retrofit DPCs. It would appear some 

retrofit DPCs are unfit for purpose and many are poorly installed. Chapter 6 of ‘Understand-

ing Dampness’ by Trotman et al. (2004) has good information on rising damp and remedia-

tion measures. 

A first principles approach would always seek to restore the solid wall and its surrounds to 

their original moisture managing condition, or at least conditions that act in a hygrothermal-

ly equivalent manner. The remedial works could include some, or all, of the following: 

 Carry out a maintenance inspection and repairs on rain water goods, roof overhangs 

and checking underground services and pipes;  

 Check if the water table is unusually high or if an underground stream exists; 

 Adjust height of footpaths or slopes that may have been changed causing surface 

water to be channelled to the wall; 

 Remove tanking and cement plasters; 

 Replace cement mortars and (if possible) altered lime mortars with an appropriate 

specification of lime mortar; 

 Repoint with an appropriate lime mortar; 

 Manage the increased salt content by (a) installing a salt extracting compress (that 

literally leaches the excess build-up of salt) on the area of wall effected, and (b) fol-

lowing this with a restoration lime plaster that blocks salt without reducing vapour 

permeability (Note, at times step (b) is sufficient.); 

 Install vapour permeable finishes. 

It is clear all this requires professional guidance, careful specification and skilled workman-

ship. 

3.2.2 Moisture-related deterioration and health risks 

Large quantities of moisture within the building fabric are likely to cause material deteriora-

tion and health risks, particularly when high moisture levels persist for prolonged periods of 

time. In this section, mould growth, a risk to occupants’ health, will be discussed first (Sec-

tion 3.2.2.1), followed by two forms of moisture-related fabric deterioration: timber decay 

due to rot (Section 3.2.2.2) and surface spalling due to freeze-thaw action (Section 3.2.2.3). 
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All three issues can be of serious concern with regard to the retrofit of internal wall insula-

tion. 

3.2.2.1 Mould growth 

Mould is a fungus, ubiquitous in nature. Thousands of known mould species exist. Mould 

reproduces via spores, which are common components of household and workplace dust. 

Moisture in buildings arises from several sources: if not properly controlled it 

can lead to mould growth and condensation – problems which affect about 

15% of homes in England to some degree. 

(BSI, 2011, p. 5) 

Mould growth in buildings occurs generally on the surfaces of building materials. It can of-

ten be smelt, frequently identified as ‘a damp smell’, before it is seen. Where surfaces are 

visible, mould can be perceived due to its colour as surface discolouration, also referred to 

as ‘ghosting’ or staining, or, in more extreme cases, as fuzzy layer of growth on surface. 

(Figure 41) Mould growth can also occur interstitially, where it is not as readily noticed. 

Excessive mould growth in buildings has multiple consequences. Discoloration due to the 

onset of mould can lead to higher maintenance costs, to the economic devaluation of build-

ings where mould is persistent and, in the case of historic buildings, to damage of historical-

ly important finishes. At worst, mould growth releases an abundance of spores and volatile 

organic compounds in the air that can lead to health problems for building occupants, po-

tentially causing allergic reactions and respiratory problems. (WHO Europe, 2009) 

However, mould growth can only occur under suitable environmental conditions. Mould 

growth should therefore be avoided by ensuring that environmental conditions are created 

that don’t encourage mould growth. These threshold levels and the methods to assess them 

are discussed in the following. At design stage steps should be taken to design-out the po-

tential for mould to occur. 
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Figure 41 Severe mould growth on the non-hygroscopic surfaces of a coated window 

frame (left) and a plasterboarded window reveal (right).  

Mould risk evaluation 

As living organisms, moulds require certain conditions to grow. In particular, there must be 

sufficiently high temperature and moisture levels and nutrients available. Moisture does not 

have to be present in liquid form for mould to grow. If the relative humidity is high enough, 

it creates environmental conditions sufficient for mould growth. 

The British Standard BS 5250, concerned with condensation control in buildings, states, re-

garding the relationship of indoor humidity levels and mould growth: 

Large numbers of mould spores are always present in the atmosphere. In or-

der to germinate those spores require warmth, a source of nutrition, oxygen 

and moisture; because they are hygroscopic they do not require liquid water. 

Many mould spores can germinate if the relative humidity at the surface ex-

ceeds 80%. Once established mould spores can continue to grow at a moisture 

level lower than 80%. … 

Buildings provide many sources of nutrition, and oxygen is always present, 

consequently the growth of moulds depends on moisture conditions at inter-

nal surfaces. In winter the internal surfaces of the external walls can be colder 

than the air in the room and the relative humidity at the face of the wall is 

about 10% greater than that in the room. As a result, if the relative humidity 
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of the room stays at 70% for long periods of time the external wall surfaces 

will be sufficiently humid to support the growth of mould. … 

If the relative humidity of the air in a room exceeds 70%, the surface relative 

humidity of an external element is likely to exceed 80%. If that occurs for more 

than two or three days, mould is likely to develop on the surface. Surface rela-

tive humidity is determined by the internal vapour pressure and the surface 

temperature of the external element, which depends upon the nature of the 

construction. The presence of thermal bridges such as those around doors and 

windows produces lower local temperatures. 

(BSI, 2011, pp. 15, 23) 

80 % RH is often used as a rule of thumb threshold to stay below in order to avoid mould 

growth on surfaces. (ibid.; DIN, 2001) This threshold level is used to simplify complexity and 

is based on microbiological studies using isopleths, or contour lines, to describe mould 

growth. 

Isopleth model 

As with many rules of thumb, there is value in being able to quickly assess constructions, as 

long as, firstly, it is clear how much detail is omitted in the process and, secondly, that the 

assessment rules are abandoned if a better understanding necessitates the use of more ac-

curate thresholds. Advanced simulation software now allows assessment of mould growth 

that goes far beyond the simplistic 80 % threshold approach. 

Since mould growth requires a certain temperature range in addition to moisture, it is pos-

sible to establish more accurate tolerances and risk levels that account for both of these pa-

rameters. Isopleths are curves describing mould growth conditions in dependence of tem-

perature and relative humidity levels. (Figure 42) 

There are hundreds of thousands of mould species on the planet. Of these, a few hundred 

have been found in buildings, and their growth patterns studied in detail. (Sedlbauer, 2001) 

Each mould species is slightly different and, therefore, has slightly different growth condi-

tions. Figure 42 shows the isopleths (dotted curves) for various mould species. Each isopleth 

describes the threshold level at which growth of the concerned mould species commences, 

i.e. environmental conditions above the curve support growth. The isopleth models for all 

mould species under consideration can be combined and an overall isopleth for all species 

determined (continuous curve in the figure). This overall isopleth is referred to as the lowest 

isopleth for mould (LIM). Below the LIM curve, none of the various mould species is able to 

grow. 
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Figure 42 Example of isopleth models: the dotted curves describe the mould growth 

thresholds for different mould species. The overall threshold is the LIM graph, 

shown as continuous curve. (Sedlbauer, 2001, fig. 30 / Image © Fraunhofer-

Gesellschaft) 

To also account for nutrients, the third requirement for mould growth, isopleth models have 

been developed further to also include different combinations of mould growing on differ-

ent material substrates. Substrates with fewer nutrients shift the various isopleths curve 

higher. In other words, higher temperature and humidity levels are required for growth to 

commence if there is limited nutrients. 

Substrate classes 

Different materials provide different conditions for mould growth. Building materials are 

generally grouped into three substrate classes: 

 Class I are easily biodegradable materials, such as wall paper and gypsum plaster-

board and materials for permanently elastic joints 

 Class II are less degradable, porous materials, such as plasters and mineral building 

materials and some timbers. 

 Class III are building materials that can be neither degraded nor contain nutrients 

non-degradable materials, such as glass, metals, foils and tiles. 

Representative LIM curves (LIMBauI, LIMBauII and LIMBauIII) have been developed for mould 

growing on each of these substrate classes. Figure 43 shows the curves for LIMBauI and 
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LIMBauII. In this figure, the curve LIMBauII describes the threshold levels for materials of sub-

strate class II, such as mineral plaster and stone which contain fewer nutrients than, for in-

stance, gypsum plaster or wall paper. The latter material selection would consequently be 

judged using substrate class I and the LIMBauI curve. Materials grouped into substrate class 

III, such as metal, glass and tiles, do not contain any nutrients and, therefore, do not support 

mould growth. Hence, no related LIMBAUIII curve shown in Figure 43. However, mould can 

also grow over these surfaces if they become contaminated, e.g. by dust, fingerprints, air 

pollution or even human perspiration. In fact in cases of significant contamination, materials 

listed in LIMBauIII and LIMBauII should be assessed as if they are a material in the LIMBauI cate-

gory. (For reference, a LIM 0 curve is also shown in the discussed figure. This isopleth repre-

sents an ideal growing substrate for mould with an abundance of nutrients, similar to that 

used in a laboratory petri dish). 

How computer simulation can be used to aid mould growth risk assessments will be dis-

cussed in Section 4.5 and further illustrated in the case study in Section 5.4.1 in the second 

part of this report, where mould risk of stone wall surfaces will be assessed. 

 

 

Figure 43 Example of LIM isopleths for different substrate classes for building materials: 

Curves LIMBauI and LIMBauII represents substrate classes I and II respectively; 

curve LIM 0 represents an ideal growing-substrate. (Fraunhofer IBP / Image © 

Fraunhofer-Gesellschaft) 

Biohygrothermal modelling 

Simulation software have been developed to create biohygrothermal models, which ac-

count for the changing conditions and passage of time in a building component. Using these 
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models, it is possible to predict the length of time that conditions will be suitable for mould 

growth at a particular location within a building component. For every hour that the tem-

perature and humidity are above the LIM curve, the mould is considered to continue grow-

ing. When this changes, it stops, but is considered to restart growing immediately when 

conditions are right again. This is a conservative approach, because, in reality, growth does 

not begin immediately and, during the non-growth periods of time, some of the mould is 

likely to die off. Therefore, hygrothermal models will always conservatively over predict the 

amount of mould growth. 

Because of this overprediction, experimental research and surveys of buildings have deter-

mined the growth levels that are acceptable in biohygrothermal models before mould 

growth issues are expected under real-world conditions. These acceptable thresholds are 

represented either as the modelled growth rate per year (Sedlbauer, 2001) or as a mould 

growth index on a scale of 0 to 6 (Viitanen and Ojanen, 2007). 

The thresholds within the bio-hygrothermal model that is used in WUFI-Bio, a bio-

hygrothermal simulation software (Section 4.5), are as follows (Fraunhofer IBP, 2010): 

 Mould growth exceeds 200 mm/year, which corresponds to a mould growth index of 

approximately 2 → usually not acceptable 

 Mould growth is between 50 and 200 mm/year → additional criteria or investiga-

tions are needed for assessing acceptability 

 Mould growth is below 50 mm/year, which corresponds to a mould growth index of 

approximately 0.5 → usually acceptable 

Biohygrothermal simulation is a field of building science still under development, and more 

research is needed to refine the accuracy of these models. Because of the interactions af-

fecting mould growth under real-world conditions, these models should only be used to as-

sess the risk of mould growth, rather than to predict actual level of growth. 

Interstitial mould growth 

The three mould growth risk models mentioned above – the 80 % threshold model, the iso-

pleth model and the biohygrothermal model – are all related to internal surfaces of the 

room. But mould can also grow interstitially, e.g. at the surfaces of cavities within the con-

struction. However, the risk of interstitial growth is reduced due to a lower availability of 

mould spores, oxygen and nutrients, as a result of lower air flow. Achieving good airtight-

ness levels can therefore help to prevent interstitial mould growth, as well as interstitial 

condensation. 
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For internal insulation retrofits, WTA (2009), a Central European association concerned with 

physics in a building conservation context, recommends that a vapour permeable insulation 

is continuously adhered to the existing wall to completely avoid any air space at the inter-

face. Where a number of other conditions are also met; including use of (a) renders, rain-

screens or impregnations that prevent driving rain ingress, (b) a normal internal moisture 

load, and (c) certain vapour permeability thresholds; the risk of interstitial mould growth 

can be disregarded, thereby allowing the critical threshold to be raised to 95 % RH – the rel-

evant level for assessing risk of masonry spalling due to freeze-thaw. (Section 3.2.2.3)  

“On s’assure de cette manière [éviter une humidité relative dans la paroi supé-

rieure à 95%] qu’aucune condensation n’apparaîtra à l’interface avec le mur 

ancien, et que, dans les conditions données, aucun dommage lié au gel ne se 

produira.” 

(“This [preventing a relative humidity higher than 95% in the wall] ensures 

that no condensation will appear at the interface with the original wall, and 

that no frost damage will occur at the given conditions.”) 

(WTA, 2009) 

However, as many traditional solid wall buildings in the UK and Ireland are vulnerable to 

driving rain (due to having a stone or brick finish) it is not clear if the 95 % RH may be ap-

plied when assessing them, if all other WTA criteria are met. Certainly greater leeway should 

be given for bonded insulation systems that are not just vapour permeable but also hygro-

scopic, capillary active (and ideally biocidic), compared to those that are vapour permeable 

only. This is clearly an area that needs exploration by British or Irish building physicists.  

A short list of insulation assemblies in this category include insulated plasters and fully-

adhered insulant board systems. The first group include lime-hemp, lime-cork bead, and 

lime-aerogel bead composites. The second group includes calcium silicate, cork or wood-

fibre board systems used with lime mortar-based adhesives. Some conventional insulation 

manufacturers wish to widen this group to include mineral wool systems (which are vapour 

permeable, but neither hygroscopic nor capillary active) once the insulation is pressed up 

against the wall, but the suitability of this system is less clear and more prone to the vagar-

ies of the wall’s flatness and the site worker’s care. 

For now, it may be best to consider that the traditional 80 % RH threshold still stands but 

that a fully bonded, hygrothermal, vapour permeable and capillary active insulation assem-

bly should give additional safety benefits. A trained hygrothermal assessor should form 

judgments in formal risk assessments case-by-case when confronted by such issues.  
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The use of a biohygrothermal model is illustrated in the case study of this report, where the 

mould growth risk is assessed for an internally insulated masonry wall. (Section 5.4.1) While, 

strictly speaking, the model is only directly applicable for internal surfaces, or air spaces on 

the warm side of the wall with a high airflow, there is value in using the model as a compar-

ative too, particularly if the study using relative humidity and acceptable thresholds has left 

some ambiguity. To do this one must bear in mind that the absolute risk indicated may be 

too conservative, if a good airtightness is achieved, and that the model is not applicable to 

fully bonded insulants where the adhesive or substrate is alkaline, because this inhibits and 

can kill mould. 

3.2.2.2 Timber decay by rot 

Rot is a fungus, causing the decay of timber. There are several fungal species which are re-

ferred to as rot. Generally, two forms of rot are distinguished: dry rot and wet rot. (Wet rot 

is also referred to as brown rot.) As with mould, rot requires specific environmental condi-

tions and nutrients to thrive. The main nutrient for rot in buildings is cellulose, hence rot’s 

ability to decompose timber. Timber can be found in various forms in solid masonry walls. 

Floor joists are set into masonry; ceiling rafters rest on (timber wall-plates placed onto) wall 

heads; timber lintols are built into walls; architraves, panelling, skirting boards are fixed to 

walls; so are timber battens to hold timber laths for plaster finishes; etc. Where a wall is 

drylined, using timber studs, these can also be in contact with the masonry. 

An example of an often found rot fungus is Serpula lacrymans: 

The dry rot fungus, Serpula lacrymans, is one of the most important wood de-

cay fungi in the built environment … [S.lacrymans] is particularly common in 

countries of northern Europe especially where bad maintenance, particularly 

of old properties, and inappropriate design or alteration may result in water 

ingress followed by timber decay caused by the fungus. Notably, however, 

S.lacrymans is rarely found outside the built environment in Europe … 

The fungus develops in poorly ventilated spaces with elevated moisture levels 

(>20% moisture content). Though the principle nutrient source for the organ-

ism is wood, it very effectively colonises non-woody building materials notably 

plaster, brick and stone. 

(Palfreyman, 2001, section 1, 2) 

Wood is able to hold a certain amount of water within its cells, before the cells are full. The 

point at which the cells are filled is the fibre saturation point. Beyond this point, water is 

held between cells and referred to as free water. This free water is accessible to the dry rot 
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fungi as a water source. Dry rot fungi can exist at lower moisture levels, but will only pro-

duce spores and decay wood when the fibre saturation point is exceeded. Rot decay can be 

halted and the fungi potentially killed through removal of the water source which the fungi 

depends on. The fungi will be dormant and eventually die once it no longer receives the re-

quired water. (McCaig, 2012; Palfreyman et al., 2002; Ridout, 2000) 

Moisture thresholds  

To avoid rot, it is generally recommended to ensure that moisture content levels are main-

tained below a threshold of 20 % of the mass of the timber. (The moisture content is a 

measure of the mass of water per mass of dry wood; it is not a reference to humidity.) 

Decay generally requires wood moisture content at fiber saturation (usually 

about 30%) or higher and temperatures between 10 and 40°C. ... Because 

wood moisture content can vary widely with sample location, a local moisture 

content of 20% or higher may indicate fiber saturation elsewhere. 

(ASHRAE, 2009, p. 25.15) 

A threshold level of 20 % is also recommended in Fraunhofer IBP (2011), whereas Singh 

(1996) suggests using a lower threshold of 16 to 18 % for subsurface moisture content level. 

Ridout (2000) describes the different effects that two different water content levels (both 

greater than 20 % by mass) can have on timbers built into masonry walls. The first may only 

be relevant at roof leaks and the likes. The latter could well be relevant behind internal insu-

lation installed to certain types of solid masonry walls. 

If the walls are made of brick or any other porous material and excess water 

penetration has caused free water to fill the large pores, then the water will 

travel easily along the end grain of the timber. … the fungi will consume the 

entire component end as far as the water entering the wall and evaporative 

loss will allow. This form of decay will continue for some time, even after the 

supply of water is halted, because until the large pores of the wall are empty 

of water there is plentiful supply of free water within the wall. 

However, if the wall is only damp then much of the water it contains will … be 

held by capillary forces in the small pores, and the amount of water that is 

available to the fungus is limited. The timber will still wet and rot, but only the 

bearing within the wall will normally be lost. Decay caused by small leaks is 

therefore usually restricted, and will cease rapidly when water penetration is 

halted. 

(Ridout, 2000, pp. 129-130) 
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To reduce the absorption of moisture from the masonry into the timber, the latter could be 

isolated from the masonry. 

Timber should be isolated from damp masonry by air space or damp proof 

membrane, and free air movement should be allowed around timber in walls, 

roofs and suspended floors. 

(Singh, 1996) 

The purpose of isolating the timber from the masonry is twofold: to avoid moisture 

transport through capillary action and to increase the potential for evaporative drying. 

However, isolating timber from the masonry also results in an increased oxygen supply, po-

tentially causing mould growth and thermal bypass. 

3.2.2.3 Surface spalling due to freeze-thaw action 

Moisture-related deterioration of the exterior surfaces of building envelopes can occur in 

the form of surface spalling, or face loss, due to freeze-thaw action. Freeze-thaw action is 

the repeated freezing and melting of water within a material. Freezing water increases in 

volume. (Section 2.5.1.1) When water freezes within the pore structure of a material, the 

volume increase causes pressure, or stress, on the material’s mass, which forms the pore 

structure. This stress can damage the material structure, if it is not strong enough. 

An area particularly susceptible to this form of deterioration is the near surface layer. 

Where repeated freeze-thaw action occurs in the near surface layer of rather soft materials, 

such as some bricks and stones, the exterior surface of the material will start spalling, due to 

the pressure caused by water freezing and thereby expanding in volume. An example of 

such surface spalling is shown in Figure 44. (The presence of salts in the near surface layer 

can also cause and/or contribute to surface spalling, but this will not be discussed further in 

this report for the sake of simplicity.) 

Certain materials can resist this stress better than others. Stone can generally withstand 

greater forces than brick, but the variance between different types of stones, or the same 

stone laid on a different plane and, even more so, different types of brick is huge. Where 

freeze-thaw action occurs often the molecular bonds of the materials can progressively 

weaken, resulting in surface spalling. While a higher content of liquid water may occur 

deeper into the masonry, the lowest temperatures, the greatest temperature swings and 

the lowest ability of the masonry to resist increased stress are all likely to be within millime-

tres of the masonry’s external surface. As a freeze-thaw cycle can occur several times in one 

day during winter time in parts of Ireland and Scotland those maintaining brick and stone-

faced buildings should take care. 
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Figure 44 Surface spalling at a wall made from engineering bricks: It was wetted repeat-

edly under controlled climatic conditions to simulating freeze-thaw action. 

(Fraunhofer IBP / image © Fraunhofer-Gesellschaft) 

Moisture thresholds 

Straube and Schumacher (2006) discuss possible moisture thresholds to prevent surface 

spalling due to freeze-thaw action: 

It is well accepted that two factors have the most importance on FT [freeze-

thaw] damage: the moisture content on freezing and the number of freeze-

thaw cycles. We have defined a freeze cycle as occurring when the tempera-

ture within the material drops below -5 C (a rather high temperature) and a 

thaw cycle to occur when the temperature rises above 0 C. This is based on 

the observation that FT is not a problem at temperatures just below freezing – 

damage tends to require temperatures much colder than -5 C and most test 

standards require the material to be cooled below -15 C. … 

Although the critical moisture content can be found from tests, such tests are 

rather involved and onerous. The dangerous moisture content is often in the 

range of 75 to 94% of the free water saturation. Given no other information 

we often choose to use 90% since it is conservative and one of the more com-

mon thresholds for brick. The same threshold can often be used for natural 

stone. 

(Straube and Schumacher, 2006) 
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The above assessment of the times that the pores are more than 90 % filled and tempera-

tures are lower than 0 °C is a useful guide to risk, but is by no means conclusive. There can 

be presence of liquid water above a relative humidity of 95 %. Therefore it seems advisable 

to stay below that threshold as a conservative rule for preventing freeze-thaw deterioration. 

(WTA, 2009) An example of a freeze-thaw risk assessment for a retrofitted stone wall is in-

cluded in the case study of this report. (Section 5.4.2) 
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4 Assessment methods and simulation tools 

Full models have as major objective to describe HAM-transport [heat, air and 

moisture transport] in the closest possible relation to the physics and thermo-

dynamics involved. (Nearly) full modelling is therefore a scientific activity. 

Simple calculation tools reflect the other extreme. They build on a typical en-

gineering point of view: calculations should be simple enough to be performed 

by hand or with the assistance of a pocket calculator. With that objective in 

mind, physics and boundary conditions are simplified to the ultimate. 

Simplified models occupy a position in between. On the one hand, the partial 

differential equations, these models build on, stay as close as possible to those 

obtained in (nearly) full modelling. On the other hand, material properties and 

boundary conditions are simplified to the lowest level possible without unac-

ceptable loss of accuracy 

(Hens, 1996) 

4.1 Methodological approaches 

Risk assessments are carried out when awareness arises that a risk of unknown likelihood 

and magnitude exists. Those involved with buildings may understand this intuitively or know 

it through experience or education and, therefore, select a specific assessment method. Al-

ternatively, they may consult guidance documents, which, in turn, may recommend an as-

sessment method. However, every assessment method is a simplification of reality. To use it 

suitably the assessor must understand the implications that these simplifications have for 

the applicability of a specific method, and thereby the resulting limitations of the method’s 

scope. In other words, the assessment process must go beyond the use of an assessment 

tool, putting its use into a specific context. The assessors’ judgment and knowledge of con-

struction, building culture and building operation are of crucial importance. 

For the hygrothermal assessment of building envelopes, two assessment methods are in 

common use: Glaser method assessments and numerical simulation assessments. Both are 

underpinned by British Standards: BS EN ISO 13788 and BS EN 15026 respectively. The 

methodologies behind these two methods differ significantly. The differences will be out-

lined in the following. Thereafter, the two assessment methods will be described in more 

detail and placed in the context of the relevant UK regulatory framework, i.e. building regu-

lations and codes of practice, and their use in practice will be critically reviewed. In addition 

to this, methods and tools for assessing the risk of mould growth and for thermal bridge as-

sessment will also be discussed. 
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Heat and moisture transport are an intrinsically linked physical phenomena. This coupling 

makes their assessment complex. Assessing these transport phenomena separately will not 

lead to the same results as assessing them simultaneously. This makes hygrothermal as-

sessments complex. Methodologically, there are essentially two approaches to dealing with 

complexity in assessments: 

1. to make a number of assumptions to simplify and decouple the equations 

2. to solve the equations numerically, using computer simulation 

The first approach forms the basis for Glaser method assessments. Its predecessor, the 

dewpoint method, originated in the US during the 1930s (Rose, 2003), and got further de-

veloped in Germany in the late 1950s (Section 4.2.1). The assessment was carried out man-

ually through the graphing of simplified input data based on steady-state conditions: today 

the latest version of this method is eased and accelerated though the use of computer soft-

ware. 

The second approach, numerical simulation, has only become possible since the late 20th 

century, due to the availability of more affordable computers and powerful microproces-

sors. Somehow much of the early work was isolated. In a study from 1990, the International 

Energy Agency (IEA) found that findings from research were not being implemented in 

standards and codes of practice: 

Many laboratories were very active in heat and moisture modelling and 

testing and applied the knowledge gained on building enclosures. Most na-

tional building codes and standards however remained notably silent on 

HAM-performance or treated the subject in a very elementary way. This 

situation convinced 14 countries, 12 as full members and 2 as observers, to 

join forces and to start a common research project named Heat, Air and 

Moisture Transfer in Highly Insulated Envelope (HAMTIE) and was initiated 

by the Energy Conservation in Buildings and Community Systems Pro-

gramme Executive Committee as Annex 24. 

 (Hens, 2002, p. 1) 

Volume 1 of the Final Report was published in 1996 and a Technical Synthesis Report in 

2002. (Interestingly certain conclusions of Annex 24 agree closely with the finding of this 

report – see page 212). This work appears to have created important common ground. Fur-

ther development and commercialisation followed.  Fraunhofer IBP, for instance, solid their 

first licence of WUFI in 1995. The new powerful software packages could solve the complex, 

coupled equations required for hygrothermal assessments, using transient-state systems 

and processing vast quantities of data. As these software packages can make more accurate 
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and realistic predictions of heat and moisture conditions within building fabric than the ear-

lier methods that relied on the decoupling of the equations, their outputs may be termed 

‘numerical simulations’. 

But what is the difference between steady- and transient-state systems? This might be ex-

plained best with examples of hygrothermal assessments. When conducting a hygrothermal 

assessment with a hugely reduced data set, say twelve calculations for the period of a year, 

daily cycles in weather pattern cannot be considered. The weather data used for such hy-

grothermal assessments will need to be monthly averages. This means that substantial 

short-term weather cycles are ignored. Such a simplified assessment, as used for Glaser 

method assessments, is based on steady-state system, which means that numerous input 

parameters, such as rain fall, pressure or heat flow, are considered in the assessment as un-

changing in time. Obviously, for such an assessment, each monthly set of weather data will 

be unique. Nonetheless, this is considered as being steady-state, compared to the vast data 

quantities processed in numerical simulation. The substantial number of calculation sets 

conducted in numerical simulations allows short-term weather cycles to be factored into 

such simulations. The calculations take account of changes in the system over time, such as 

hourly oscillations in temperature or humidity. When based on hourly calculations, a yearly 

simulation would consists of 8760 calculation sets. This assessment approach, used for nu-

merical simulation assessments, allows input parameters to change over time and is there-

fore referred to as a transient-state system. 

Table 6 lists the differences between hygrothermal assessment methodologies, based on 

steady-state and transient-state systems. 

Methodological approach Steady-state system Transient-state system 

Method design solve simplified, decoupled 

equations 

Solve complex equations 

numerically 

Assessment type Glaser method numerical simulation 

Associated standard BS EN ISO 13788 BS EN 15026 

Assessment basis twelve monthly calculations 

for an assessment period of 

one-year 

hourly calculation sets for 

an assessment period of 

several years 

Table 6 Differences between hygrothermal assessment methodologies, based on 

steady- and transient-state systems 
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4.2 Glaser method (BS EN ISO 13788) 

4.2.1 Scope and limitations 

The Glaser method is a procedure to assess the condensation risk in building fabric. The 

procedure, described in the British Standard BS EN ISO 13788:2012 (BSI, 2013), consists of 

“simplified calculation methods, which assume that moisture transport is by vapour diffu-

sion only and use monthly climate data.” (ibid., p. v) The method further assumes “one-

dimensional, steady-state conditions.” (ibid., p. 9)  

The original Glaser method, developed by Dr. H. Glaser, a German engineer, was first pub-

lished in 1959, as an assessment method for diffusion transport processes in the thermal 

envelopes of cold rooms. (Glaser, 1959) The method was originally developed as a graphical 

assessment procedure, but is now generally processed using computers. Although the Gla-

ser method, today, is heavily used worldwide, it was only in 2002 that it was first published 

in a British Standard. (BSI, 2002b) The name Glaser method is actually not prominently used 

in the standard. It is only in a note that the name is acknowledged: “Calculation methods 

according to this principle [as set out in the standard] are often called ‘Glaser methods’.” 

(ibid., p. 10) Strictly speaking, the standard presents a variant of the Glaser method, involv-

ing twelve calculations based on monthly mean external environmental conditions and addi-

tional criteria for moisture accumulation and evaporation. A revised version of this stand-

ard, BS EN ISO 13788:2012 was published in 2013. (BSI, 2013) This paper refers to the ‘Gla-

ser method’ as defined in this standard and not to the original method. 

In its introduction, BS EN ISO 13788:2012 outlines its scope, but also hints at its limitations: 

Moisture transfer is a very complex process and the knowledge of moisture 

transfer mechanisms, material properties, initial conditions and boundary 

conditions is often limited. Therefore this … Standard lays down simplified cal-

culation methods, which assume that moisture transport is by vapour diffu-

sion alone and use monthly climate data. The standardization of these calcu-

lation methods does not exclude use of more advanced methods. If other 

sources of moisture, such as rain penetration or convection, are negligible, the 

calculations normally lead to designs well on the safe side 

(BSI, 2013, p. v, underlining added to quotation) 

The standard essentially provides three calculation methods for: 

a) The internal surface temperature of a building component or building el-

ement below which mould growth is likely … 
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b) The assessment of the risk of interstitial condensation due to water va-

pour diffusion. … 

c) The time taken for water … in a layer between two high vapour resistance 

layers to dry out and the [associated] risk of interstitial condensation … 

(ibid., p. 1) 

The first two of these methods are of particular interest in the context of this paper. 

The method used does not take account of a number of important physical 

phenomena including: 

• The variation of material properties with moisture content; 

• Capillary suction and liquid moisture transport within materials; 

• Air movement from within the building into the component through gaps 

or within air space; 

• The hygroscopic moisture capacity of materials. 

Consequently, the method is applicable only where the effects of these phe-

nomena can be considered to be negligible. 

(ibid., p. 1) 

From the above quotations clearly state that the only moisture transport process consid-

ered in the standard is vapour diffusion. Liquid transport and vapour convection are not 

covered, in order to simplify the assessment method. Liquid, in the form of “ground water 

and ingress of precipitation” (i.e. rising damp and rain water respectively) and its transport 

by capillary action are ignored. (ibid., p. v) So is airflow and thereby moisture convection, 

despite being “a major mechanism for moisture transport, which can increase the risk of 

condensation problems very significantly.” (ibid., p. v) In other words: 

This Standard is not intended to be used for building elements where there is 

airflow through or within the element or where rain [or ground] water is ab-

sorbed. 

(BSI, 2013, p. 10) 

Being a simplified calculation procedure, the Glaser method has substantial limitation and is 

only applicable under specific conditions. It is worth analysing what these limitations and 
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conditions mean in the context of traditional building construction, particularly where tradi-

tional stone walls are involved. 

Exclusion of precipitation: Traditional masonry walls are air and moisture permeable (Sec-

tion 3.1.3) with varying susceptibility to rain water penetration. Precipitation is a considera-

ble climatic factor throughout the British Isles. It can have a particularly severe impact on 

building envelopes when precipitation occurs in the form of wind-driven rain. Although ex-

posure levels of wind-driven rain vary significantly throughout the British Isles, most of their 

north and west coasts experience regularly severe exposure levels. These also tends to be 

the areas where traditional walls are constructed in solid stone masonry. It follows that, be-

cause of its exclusion of precipitation, the Glaser method is not suitable for assessing tradi-

tional stone walls exposed to high levels of wind-driven rain. It is not completely clear, to 

date, under which conditions rain water penetration of such walls can lead to damaging lev-

els of moisture accumulation (long-term) and how it impacts on condensation issues. (Her-

mann, 2013; Baker et al., 2014) It is, however, clear that the Glaser method is not suitable to 

assess walls under such conditions. Considering these uncertainties, it therefore would be 

prudent to use more advanced assessments methods for such forms of construction. 

Exclusion of liquid transport: Traditional masonry walls frequently absorb liquid water in 

the form of rain water, but occasionally also due to ground water penetration. Moisture 

content levels will therefore fluctuate hourly, daily and seasonally. As these walls are mois-

ture managing, liquid transport within the wall fabric is a common, naturally occurring phe-

nomenon. But liquid transport is also important where moisture accumulates as a result of 

driving rain, condensation or where hygroscopic building materials are present. As liquid 

water accumulates within a porous material’s pores, it will migrate away from the wettest 

point due to transport by capillary action or surface diffusion. Proponents of the Glaser 

method claim that their calculations are more conservative as they do not allow for this re-

distribution. While it is true that their calculations may show higher peaks and far more in-

cidence of 100 % RH, they do not reflect the hygrothermal performance of building materi-

als sufficiently well. As shown in Section 5.3, Glaser method assessments of hygroscopic ma-

terials can predict failure where none occurs and no risk where risks are actually high. 

Exclusion of the hygroscopic moisture capacity of materials: Hygroscopicity is the capacity 

of a material to react to the moisture content of the air, by absorbing or releasing water va-

pour. (Section 2.5.1.5) For this process, the water content of the material is of decisive sig-

nificance (TIS, 2013), including both the amount of liquid and gaseous water. Although the 

Glaser method considers vapour diffusion as the only occurring form of moisture transport, 

it excludes, for the sake of simplicity, the hygroscopic properties of material, which can lead, 

under certain conditions, to distorted diffusion predictions. This can lead to moisture con-

tents higher than that predicted by the Glaser method, which, in turn, can result in mould 
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growth and rot even before condensation occurs. Therefore, in materials subject to such 

forms of deterioration, e.g. wood-based products, the moisture content is critically im-

portant. Ignoring the hygroscopic moisture capacity in an assessment could result in over-

looking failure conditions. 

From the above discussion, it becomes apparent that liquid transport obviously plays a role 

–and under certain conditions an important role– in assessing the hygrothermal perfor-

mance of a traditional stone wall to establish condensation risks. Confusingly, BS EN ISO 

13788:2012 claims, albeit only in a note: 

Due to the many sources of error, this calculation method is less suitable for 

certain building components and climate. Neglecting moisture transfer in the 

liquid phase normally results in an overestimate of the risk of interstitial con-

densation. 

(BSI, 2013, p. 10) 

For which building elements can the standard be used? 

The limitations on the physical processes covered by this … Standard mean 

that it can provide a more robust analysis of some structures than others. The 

results will be more reliable for lightweight, airtight structures that do not 

contain materials that store large amounts of water. They are less reliable for 

structures with large thermal and moisture capacity and which are subject to 

significant air leakage. 

(BSI, 2013, p. v) 

This clearly means that the Glaser method is ‘less reliable’ –and potentially completely un-

suitable– for the condensation risk assessment of traditional stone walls. However, the 

standard falls short of clear guidance as to when it should not be used. 

The method is an assessment rather than an accurate prediction tool. It is 

suitable for comparing different constructions and assessing the effects of 

modifications. It does not provide an accurate prediction of moisture condi-

tions within the structure under service conditions. 

(BSI, 2013, p. 9) 

This suggests that the Glaser method should only be used to compare, at the design stage, 

alternate forms of lightweight, airtight construction, made only with materials with a low 

water storage capacity. For such construction forms, the Glaser method can be used as a 

prediction tool. In no case should the Glaser method be used for forms of heavy-weight and 
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potentially less airtight construction, made from hygroscopic materials and subjected to se-

vere weather conditions. Traditional stone walls, particularly in locations with severe wind-

driven rain exposure, are thereby specifically excluded from the scope of BS EN ISO 

13788:2012. The Glaser method should not be used to assess them. Or in the words of re-

lated American guidance: 

Because all moisture transfer mechanisms except for water vapor are exclud-

ed [from the Glaser method], results should be considered as approximations 

and should be used with extreme care. … The dewpoint and Glaser methods … 

are still used by design professionals and actually form the basis for most 

codes [building regulations / building standard] dealing with moisture control 

and vapor retarders. 

(ASHRAE, 2009, p. 25.13) 

Nonetheless, in practice in Ireland and the UK, the Glaser method is frequently used to as-

sess exactly the condensation risk of building fabric specifically excluded from the scope of 

BS EN ISO 13788:2012. Why the Glaser method continues, to date, to be used as the pre-

ferred assessment method for condensation risk, even in situation where it is unsuitable, 

and what is needed to create greater awareness for more suitable advanced assessment 

simulations, using numerical simulation, is discussed further in Section 4.4.3.2. 

4.2.2 Assessment procedure 

The Glaser method calculations are based on decoupling the equations for heat and vapour 

transport. Therefore, heat transfer and vapour transport (or rather their equivalents accord-

ing to the Glaser method: saturation vapour pressure and vapour pressure) are each calcu-

lated in isolation, and the results of these separate calculations are then overlaid. According 

to BS EN ISO 13788, the calculations at the material interfaces are conducted twelve sepa-

rate times: once for each month of the year. One-dimensional, steady-state conditions are 

assumed. For each month, the interior and exterior temperatures and relative humidities 

are defined, based monthly averages. Essentially, saturation pressure and partial pressure 

are calculated and plotted over a specific form of a cross section of the construction, result-

ing in two pressure profiles which can then be analysed. (Figure 45) 
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Figure 45 Example of Glaser method diagrams showing partial and saturation pressure 

profiles across a cross section of building fabric: the left diagram shows profiles 

for February, indicating interstitial condensation at the location where profile 

lines meet. The June profiles (right) indicate evaporation.  

A Glaser method analysis consists of six steps: firstly, the temperatures at the material sur-

faces and interfaces are calculated, based on exterior and interior temperatures. Secondly, 

from the resulting temperatures, the saturation pressures are calculated for the same loca-

tions. Thirdly, these pressures are plotted over a cross section of the construction, in which 

its layers are set out with thicknesses relating to their water vapour resistance, using sd-

values or water vapour diffusion equivalent air layer thicknesses. (Coatings, foils and mem-

branes should be treated as individual layers with their specific thermal and vapour re-

sistance, e.g. foil incorporated into insulation board should be modelled as a separate layer. 

It is often useful to subdivide layers with high thermal resistance, e.g. insulation, into several 

layers.) Fourthly, straight lines are drawn to connect the saturation vapour pressures points 

at each interface. If there was no accumulation in the previous month, the vapour pressure 

profile is drawn as a straight line from inside to outside. If this profile does not exceed the 

saturation pressure at each interface, it is judged that condensation does not occur. Lastly, if 

the vapour pressure profile crosses the saturation pressure profile at any point, the vapour 

pressure profile is redrawn as a series of lines that touch the saturation pressure profile at 

as few points as possible. These points are referred to as condensation interfaces. The six-

step process is repeated for each month of the year, and the rate of condensation is calcu-

lated as the difference between the amount of moisture transported to and from the con-

densation interface. (The procedure is described in more detail in the standard.) 

The standard requires that the interstitial condensation calculations are assessed and re-

ported as follows: 

Report the results of the calculations according to a), b) or c) as applicable. 

a) No condensation predicted at any interface in any month. 
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In this case report the structure as being free of interstitial condensation. 

b) Condensation occurs at one or more interfaces but, for each interface con-

cerned, all the condensate is predicted to evaporate during the summer 

months. 

In this case report the maximum amount of condensation that occurred at 

each interface, and the month during which the maximum occurred. Also, the 

risk of water run-off or degradation of building materials and deterioration of 

thermal performance as a consequence of the calculated maximum amount of 

moisture shall be considered according to regulatory requirements and other 

guidance in product standards. … 

c) Condensation at one or more interfaces does not completely evaporate. 

In this case report that the structure has failed the assessment, and state the 

maximum amount of moisture that occurred at each interface together with 

the amount of moisture remaining after twelve months at each interface. 

(BSI, 2013, p. 16) 

Typically, a particular construction assessed using this method is said to pass if there is no 

condensation or if the total amount of condensate at each assessment location is able to 

evaporate within the same year. Otherwise it is said to fail.  

It is worth noting that such one-dimensional assessments cannot account for elevated heat 

losses occurring at construction junctions, which, in turn can lead to lower surface tempera-

tures. 

4.2.3 Assessment tools 

Glaser method calculations used to be conducted by hand. Nowadays, of course, there are 

computer programs that will perform the twelve (monthly) calculations to produce the 

temperature and vapour pressure profiles. Commonly used programs in Britain and Ireland 

include BuildDesk U. (Figure 46) 
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Figure 46 Screenshot of BuildDesk U 3.4: the graphical interface and ease of use make 

this computer program a popular assessment tool.  

These computer programs perform steady-state interstitial condensation risk-assessments, 

according to BS EN ISO 13788. And they do so almost immediately. The ease of use, calcula-

tion speed and graphical interface (both for inputs and results) make these programs popu-

lar with the construction industry. (Figure 47) 

While there are several help features and warnings in BuildDesk U, none of these aids users 

in ensuring that a building component selected from its database, or assembled by the us-

ers, is within the defined scope of BS EN ISO 13788. (This may, or may not, be true of other 

software tools used for Glaser-method assessments; the authors have only had access to 

BuildDesk U.) It is up to the software user to decide whether this assessment method and 

software tool should be used, based on their own understanding of the underlying standard, 

its scope and limitations and the form of construction concerned. 
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Figure 47 Screenshot of BuildDesk U 3.4: green checkmarks indicate that, according to a 

Glaser method assessment, no condensation is predicted.  

The individual construction layers are based on following five parameters: 

 thickness [m] 

 bulk density, ρ [kg/m3] 

 specific heat capacity, cp [J/(kg∙K)] 

 thermal conductivity , λ [W/(m∙K)] 

 vapour diffusion resistance factor, µ [-] 

Albeit this list of hygrothermal values is limited, the use of the data and the selection proce-

dure in BuildDesk U is robust and clear. The first value, the thickness of a material, can be 

entered by the user, though manufacturer-defined values are prompted to help reduce in-

put errors. The other four values are material properties. Cleverly, since the launch of ver-

sion 3.1, BuildDesk has a ranking system for material data, clearly identifying the data prov-

enance and likely accuracy in this ranking system, with user-defined entries given the lowest 
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ranking to reduce the likelihood of errors. Regarding the various forms of measures used for 

vapour resistance, BuildDesk (n.d.) is a useful guide for their conversions.  
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4.3 Numerical simulation (BS EN 15026) 

4.3.1 Scope and limitations 

In the past, moisture control strategies [e.g. the Glaser method] focused on 

water vapour diffusion. Displacement of water vapour by air movement was 

treated superficially, and liquid water transport provoked by wind-driven rain 

or soil moisture [i.e. ‘rising damp’] was overlooked almost completely. When 

present, however, these mechanisms can move far greater amounts of mois-

ture than diffusion does. Therefore, air movement and liquid flow should have 

a higher priority in moisture control. 

(ASHRAE, 2009, p. 25.10) 

Whereas the scope for the Glaser method assessments, in accordance with BS EN ISO 

13788, specifically excludes any forms of construction in which precipitation, hygroscopicity 

or liquid transport are of importance, the numerical simulation assessments specifically in-

cludes these phenomena. Numerical simulation for hygrothermal assessments was devel-

oped in the 1990s, and its more general use was made possible through increasingly availa-

ble computing power. In 2007, the first British Standard on numerical simulation for hygro-

thermal assessments was published: BS EN 15026:2007. (BSI, 2007a) 

The standard usefully starts with a describing its scope in comparison to that of BS EN ISO 

13788: 

This standard defines the practical application of hygrothermal simulation 

software used to predict one-dimensional transient heat and moisture trans-

fer in multi-layer building envelope components subjected to non-steady cli-

mate conditions on either side. In contrast to the steady-state assessment of 

interstitial condensation by the Glaser method (as described in EN ISO 13788), 

transient hygrothermal simulation provides more detailed and accurate in-

formation on the risk of moisture problems within building components and 

on the design of remedial treatment. While the Glaser method considers only 

steady-state conduction of heat and vapour diffusion, the transient models 

covered in this standard take account of heat and moisture storage, latent 

heat effects, and liquid and convective transport under realistic boundary and 

initial conditions. The application of such models has become widely used in 

building practice in recent years, resulting in a significant improvement in the 

accuracy and reproducibility of hygrothermal simulation. 

(BSI, 2007a, p. 4) 
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The aim of the numerical simulation standard is much wider than the Glaser method stand-

ard: whereas the latter was predominantly concerned with the assessment of condensation 

risk, the numerical simulation standard aims at providing a model for simulating the hygro-

thermal performance of building fabric over time. This can be used to assess condensation 

risk, but it can also be used for other purposes. However, this also means that, where the 

Glaser method standard provide clear pass / fail guidance specifically for condensation risk 

assessments, the numerical simulation standard does not. It only sets out the equations to 

be used for the simulation model and provides some guidance for the interpretation of re-

sults. 

The following quotation describes in more detail the scope and limitations of the numerical 

simulation standard, BS EN 15026:2007: 

This standard specifies the equations to be used in a simulation method for 

calculating the non-steady transfer of heat and moisture through building 

structures. … 

The equations in this standard take account of the following storage and one-

dimensional transport phenomena:  

• heat storage in dry building materials and absorbed water; 

• heat transport by moisture-dependent thermal conduction; 

• latent heat transfer by vapour diffusion; 

• moisture storage by vapour sorption and capillary forces; 

• moisture transport by vapour diffusion; 

• moisture transport by liquid transport (surface diffusion and capil-

lary flow). 

The equations described in this standard account for the following climatic 

variables: 

• internal and external temperature; 

• internal and external humidity; 

• solar and longwave radiation; 

• precipitation (normal and driving rain);  
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• wind speed and direction. 

The hygrothermal equations described in this standard shall not be applied in 

cases where: 

• Convection takes place through holes and cracks; 

• Two-dimensional effects play an important part (e.g. rising damp, 

conditions around thermal bridges, effect of gravitational forces); 

• Hydraulic, osmotic, electrophoretic forces are present; 

• Daily mean temperatures in the component exceed 50 °C. 

(BSI, 2007a, p. 5) 

Of the four limitations listed above, the first two are most relevant in the context of this pa-

per: namely, that the standard’s procedure should not be used in situations where convec-

tion takes place through holes and cracks and where two-dimensional effects play an im-

portant part. The other two limitations –hydraulic, osmotic, electrophoretic forces and ex-

treme daily main temperatures– are not generally relevant in a building context in the Brit-

ish Isles. 

4.3.2 Assessment procedure 

Due to their complexity, hygrothermal assessments by numerical simulation are carried by 

computer software. The software overlays the building component to be analysed with a 

computational grid. (Figure 48) Although, in reality, moisture and heat affect each other 

continuously across the width of a component, in numerical simulation this relationship is 

only assessed at the centre of a grid cell, or grid element. The grid is variable-sized, with 

closely spaced grid elements at component surfaces and material interfaces. It is at these 

locations that the most marked hygrothermal changes occur. Within a component’s materi-

al layer, more widely spaced elements are used, thereby minimising the number of calcula-

tions. A variable-sized grid is used to improve the efficiency of the simulation: too many nar-

rowly spaced grid elements result in an increase in calculation time, but if they are too wide-

ly spaced, precision is lost. 

In a numerical simulation, coupled, differential equations are solved for heat and moisture 

transport processes for each grid element and unit of time selected (normally an hour), us-

ing as boundary conditions either environmental data from the adjacent grid elements or 

internal and external climate data. This process is repeated for the duration of the simula-

tion period. For a simulation using a simulation period of ten years and hourly intervals, this 
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will result in 87,600 calculation sets. This iterative process is illustrated in Figure 49 with a 

flowchart. 

 

Figure 48 Screenshot of WUFI Pro 5.1: the software uses variable-sized, computational 

grid elements to assess the cross section of a construction. Denser grid ele-

ments are used at the inside and outside surface of the construction and at the 

material interfaces.  

The repetition nature of the simulation over a selected period of time results in a stream of 

outputs, recording changes in temperature, humidity, water content and vapour pressure. 

These outputs are based on the material properties and adjacent conditions. The types of 

outputs can be viewed either together, as a film, or separately, in graph form or as a spread-

sheet. This enables the user to interrogate the predicted hygrothermal conditions at any 

point in the component at any time in the simulation period. This provides a wealth of hy-

grothermal information that goes far beyond the narrower focus of the Glaser method. It is 

mostly left to the user to assess if the conditions are acceptable or not. Instead, the numeri-

cal simulation standard only provides guidelines for the interpretation of the results. 

The documentation of the results may be followed by an interpretation of 

their practical meaning. This may be done by at least one of the following 

items: 
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• Comparing the resulting hygrothermal conditions with specified limits. 

• Checking the risk of moisture accumulation by comparing the total mois-

ture content in the construction after one cycle with the initial condition. 

• Evaluating the moisture tolerance of the construction (drying potential). 

• Feeding the transient results into a post process model (e.g. for mould or 

algae growth, rot, corrosion). 

(BSI, 2007a, item 6.4.3) 

 

 

Figure 49 Flowchart illustrating the iterative process behind the numerical simulation 

method 



Historic Environment Scotland Technical Paper 15 

Page 124 of 256 

The related German standard DIN 4108-3:2001 (DIN, 2002) provides more specific limits, 

but even these figures can be regarded as somewhat arbitrary. The German standard rec-

ommends, as stated in English in WUFI’s Online Help, that: 

• The amount of condensing moisture in roof or wall constructions must not 

exceed a total of 1.0 kg/m². 

• At interfaces between materials that are not capillary-active, no moisture 

increase exceeding 0.5 kg/m² is permissible. This is meant to avoid mois-

ture running or dripping off, which could accumulate elsewhere and cause 

damage.  

• The moisture increase in wood must not exceed 5 mass-per cent; the 

moisture increase in materials made of processed wood must not exceed 

3 mass-per cent. 

(Fraunhofer IBP, 2011) 

The first two of these criteria could equally be applied in Glaser method assessments, when 

calculating the amount for condensation occurring at material interfaces. However, no Brit-

ish Standard places specific limits on the quantity of moisture accumulation in the way 

DIN 4108-3 does. The only specific limits noted in BS 5250:2011 describe the amount of 

condensate regards to result in visual effect of condensation on impermeable surface, such 

as mist, droplets, drops and run-off. The British Standard, however, does not specify any 

limits to remain within when conducting risk assessments. (BSI, 2011, Tab. A.1) 

Not surprisingly, numerical simulation software requires more training than software em-

ploying the Glaser method. Without question, numerical simulations use more concepts 

that could be insufficiently understood, inputs that could be entered incorrectly and outputs 

that could be misinterpreted. Users of numerical simulation should therefore adopt a ques-

tioning attitude to outputs and initial interpretation. Numerical simulation is not an easy 

solution for condensation risk assessments. But it is a tool applicable to every building type 

and location in the British Isles.  

4.3.3 Assessment tools 

Due to their complexity, hygrothermal assessments are conducted using computer soft-

ware. A variety of programs has developed since the 1990s, including Delphin, HygIRC, 

MOIST and WUFI. (Hill and McGowan, 2003, Tab. 1) In practice today, WUFI appears to be 

most widely used, followed by Delphin. (Fraunhofer IBP, n.d.2; TU Dresden, Institute for 

Building Climatology, n.d.) Both software program have been developed in Germany. They 
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are readily available, well supported and capable of being used by non-physicists. More 

comparable tools will hopefully join them soon. 

WUFI is the software used for the case study assessments in part 2 of this report. The soft-

ware was developed by the Fraunhofer Institute for Building Physics. A whole family of WU-

FI software is available, including WUFI Pro and WUFI 2D for one- and two-dimensional sim-

ulation respectively. (Fraunhofer IBP, 2012) Also available is a free, but functionally limited 

version (WUFI Light) and a version which imbeds hygrothermal assessment into whole-

building simulation (WUFI Plus). The case study assessments for this report were simulated 

one-dimensionally with WUFI Pro. (Why one-dimensional simulation is suitable in this situa-

tion is discussed in Section 5.3.2.3.) WUFI hygrothermal software can also be extended with 

post-processing programs, including WUFI-Bio, which simulates mould growth. WUFI-Bio 

will also be briefly demonstrated as part of the case study in this report. (Section 5.4.1) 

4.4 Regulatory context and practical application 

4.4.1 Regulatory framework 

When altering or extending a building, requirements set out in the building regulations need 

to be met generally. Although different regulations apply to England, Ireland, Northern Ire-

land, Scotland, and Wales (though England and Wales share most regulations to date), their 

aims and content are similar. The building regulations are generally supported by govern-

mental documents, providing technical guidance. In the following, only the English and Scot-

tish documents will be discussed. These are, for England, the Approved Documents (HM 

Government and Welsh Government, n.d.) and, for Scotland, the Technical Handbooks 

(Scottish Government, 2013). The focus of the discussion will be on how the regulations and 

associated technical guidance deal with condensation risk in buildings and, more specifically, 

how they reference the Glaser method and numerical simulation standards, BS EN ISO 

13788 and BS EN 15026 respectively. England’s regulatory framework will be discussed first. 

4.4.1.1 England 

The Building Regulations for England require that 

The walls, floors and roof of the building shall adequately protect the building 

and people who use the building from harmful effects caused by: 

(a) ground moisture; 

(b) precipitation including wind-driven spray; 

(c) interstitial and surface condensation; and 
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(d) spillage of water from or associated with sanitary fitting or fixed appli-

ances. 

(Building Regulations 2010, schedule 1, clause C2) 

Regarding condensation risk, the associated technical guidance, Approved Document C, 

states for external walls: 

An external wall will meet the requirement [of the building regulations] if it is 

designed and constructed in accordance with Clause 8.3 of BS 5250:2002 … 

and BS EN ISO 13788:2002. 

(HM Government, 2013, clause 5.34) 

The English guidance directly references the Glaser method standard, BS EN ISO 13788, and 

makes no mention of BS EN 15026, regarding the availability and use of numerical simula-

tions. Approved Document C also references another British Standard, BS 5250:2002, which 

sets out a Code of Practice for Control of Condensation in Buildings. This standard will need 

to be examined in more detail, but only after taking a look at how Scotland’s regulations and 

guidance deal with condensation risk. (Although last revised in 2013, Approved Document C 

still references the 2002 versions of BS 5250 and BS EN ISO 13788, despite the publication of 

revised standards in 2011 and 2012 respectively.) 

4.4.1.2 Scotland 

The Building (Scotland) Regulations 2004 deal with moisture-related requirements for build-

ing envelopes in three Building Standards: 3.4 is concerned with Moisture from the ground, 

3.10 with Precipitation, and 3.15 with Condensation. Only the latter shall be discussed here. 

Building Standard 3.15 states that 

Every building must be designed and constructed in such a way that there will 

not be a threat to the building or the health of the occupants as a result of 

moisture caused by surface or interstitial condensation. 

(Building (Scotland) Regulations 2004, schedule 5, clause 3.15) 

Scotland’s Technical Handbooks complement this by stating that 

The guidance given in BS 5250:2002 ‘Code of Practice for the control of con-

densation in buildings’ is helpful in preventing both interstitial and surface 

condensation. … 

(Scottish Government, 2013, clause 3.15.1) 
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Walls, roofs and floors should be assessed and/or constructed in accordance 

with Section 8 and Annex D of BS 5250:2002. 

(Scottish Government, 2013, clause 3.15.5) 

As England’s Approved Document C, Scotland’s Technical Handbooks reference BS 5250 for 

condensation risk assessments of building envelopes. However, unlike in the English docu-

ment, the Technical Handbooks refrain from suggesting explicitly that BS EN ISO 13788 

should be used. But they, also, do not mention to BS EN 15026. (As in England, the refer-

ences still refers to the 2002 versions of BS 5250 and BS EN ISO 13788, despite revision of 

the Technical Handbooks in 2013.) 

It is apparent from England’s and Scotland’s technical guidance to their building regulations 

that BS 5250 plays a key role for the assessment of condensation risk in buildings. This 

standard shall therefore be examined in more detail. 

4.4.2 Code of Practice (BS 5250) 

The principal guidance for Ireland and the UK regarding hygrothermal issues in buildings is 

the British Standard BS 5250:2011 Code of Practice for Control of Condensation in Buildings 

(BSI, 2011). Originally published in 1975, it was revised in 1989, 2002 and 2011. (BSI, 1975; 

1989; 2002a) The standard is extensively referenced, including technical guidance to Eng-

land’s and Scotland’s building regulations, although references generally refer to the 2002 

versions of the standards. 

BS 5250 has a wide scope, describing hygrothermal characteristics, internal and external 

climatic conditions, moisture production rates, assessment methods, building elements and 

building components that are intended to be free of interstitial condensation, heating re-

gimes, ventilation systems and guidance for building owners. The assessment methods 

range from visual surveys and occupant surveys to methodologies set out in internationals 

standards. BS 5250 is clearly intended to be a frequently used resource for the construction 

industry and those involved in building maintenance. BS 5250:2011 acknowledges that in-

creased levels of thermal insulation result in higher condensation risks and describes how 

the decisions of building designers, contractors, managers and occupants affect the ability 

to control condensation. In its foreword, the standard states: 

The requirement for more efficient use of energy in the operation and use of 

buildings has led to increased levels of thermal insulation and airtightness in 

both new and refurbished buildings; this has led to an increased risk of dam-

age from condensation. ... Bearing in mind that occupants often fail to use 

buildings in the manner intended, be it by choice, lack of understanding or 
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force of circumstance, designers are advised to err on the side of caution and 

adopt robust fail-safe solution. … When it is proposed to re-furbish a building 

or make changes to its use, the risk of condensation has to be re-assessed in 

the light of the new usage. 

(BSI, 2011, p. iii) 

While BS 5250:2011 provides excellent guidance on many issues, it appears to falls short 

when dealing specifically with the value of numerical simulation for moisture risk assess-

ment and with issues affecting the retrofit of internal insulation to solid walls. The standard 

references BS EN ISO 13788 as the preferred assessment method for condensation risks, 

but, at least, mentions that “More advanced methods, which are standardized in BS EN 

15026, are available”. (ibid., p. 24) The authors of this report find it extremely disappointing 

that BS 5250:2011 does not (even attempt to) give equal status to both assessment meth-

ods. While BS EN ISO 13788 is referenced twelve times and its methodologies, inputs and 

limitations are discussed in several chapters, BS EN 15026 is referred to in one sentence on-

ly. It is regrettable, even perplexing, that BS 5250:2011 does not give at least equal im-

portance to assessments by numerical simulation or the aspects of building physics which 

underpin it and are so particularly pertinent for the retrofit of buildings, despite the publica-

tion of BS EN 15026 in 2007. 

Although a detailed discussion of BS 5250:2011 is outside the scope of this report, the fol-

lowing observations can be made: 

1) The 2011 revision of BS 5250 contains expanded guidance on surveying practice, at-

tics and roofs, but little revision with regard to hygrothermal assessment. 

2) It is extraordinary that BS 5250:2011 does not state BS EN 15026 in the list of rele-

vant normative references, although mentioning the numerical simulation standard 

in its normative annex D. (ibid., section 2 and annex D.3.1) 

3) In relation to climatic conditions, BS 5250:2011 refers to average monthly values, as 

used in the Glaser method, but when, for example, discussing significant short-term 

weather events for roof design and radiant heating and cooling, the standard omits 

to state that one of the best ways to evaluate these risks is using numerical simula-

tion assessment with hourly climatic inputs. (ibid., pp. 7-8) 

4) Although there are three driving potentials for moisture transport in building fabric 

(Section 3.2), only vapour convection through gaps or within air spaces and vapour 

pressure are discussed in BS 5250:2011.  
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5) Regarding rain water, which can deliver most of the moisture traditional solid walls 

have to deal with, BS 5250:2011 only states briefly that the external envelope of a 

building needs “to provide protection against precipitation, in particular against 

wind-driven rain, which can be absorbed into masonry, reducing the overall thermal 

resistance of walling. Careful attention has to be paid to joints and junctions in and 

between components and elements.” (BSI, 2011, annex A.2, item d) Interestingly, 

the standard considers the thermal performance at risk, not the moisture content. 

The only mention in BS 5250:2011 of liquid transport due to capillary action is as a 

limitation of the Glaser method. (ibid., annex D.3.5, item c) 

With regard to walls, BS 5250:2011 recommends that the building designer should take ac-

count of the following moisture sources: ground moisture, rain water, construction moisture 

and moisture generated by occupants. (ibid., annex G.1) 

The standard specifically covers solid masonry walls when discussing the significance of 

choosing a heating system appropriate for their thermal mass and the use of external and 

internal wall insulation. Internal wall insulation is discussed as follows: 

Solid masonry walls, insulated internally may be used with an intermittent 

heating regime without incurring a risk of surface condensation. 

Internally applied thermal insulation isolates the heated interior from the ma-

sonry, which will therefore be cold, producing a risk of interstitial condensa-

tion behind the thermal insulation; to prevent that, an AVCL should be applied 

on the warm side of the thermal insulation … 

(BSI, 2011, annex G.3.1.4) 

Considering the extraordinary range of traditional wall construction types and internal wall 

insulation products, this must be considered incomplete and, in some situations, even coun-

terproductive guidance. The influence of different internal wall insulation products and dif-

ferent AVCLs will be illustrated in more detail in the case study of this report. (Section 5) 

The above discussion has shown that BS 5250:2011 focusses, as its title suggests, on the 

control of condensation in buildings. It does so by focussing on the internal climatic condi-

tions and favouring Glaser method assessments. Such an approach appears appropriate for 

new-built, lightweight, framed construction. For the assessment of traditional wall construc-

tion though, this approach severely limits the assessment, by excluding, for example, transi-

ent environmental conditions and liquid transport. BS 5250 briefly notes the limitations of 

the Glaser method: 



Historic Environment Scotland Technical Paper 15 

Page 130 of 256 

It assumes one-dimensional, steady-state conditions and does not consider air 

movement within or through the construction and makes no allowance for the 

moisture in the material or rain water absorbed during construction. Conse-

quently, while it is useful for comparing the performance of different struc-

tures, it does not provide an accurate prediction of moisture conditions within 

the structure under service conditions. More advanced methods, standardized 

in BS EN 15026, are available …. 

(BSI, 2011, annex D.3.1) 

BS 5250:2011 appears at first to be fully relevant to buildings anywhere on the British Isles, 

but despite providing valuable guidance on a host of hygrothermal issues, the standard has 

little relevance to traditional wall construction and their retrofit with internal wall insula-

tion. 

4.4.3 Current use of the Glaser method 

4.4.3.1 Diffusion paradigm 

The Glaser method assessment uses simplification of the involved hygrothermal processes 

as its basis. This assessment approach has been described as a diffusion paradigm: 

The diffusion paradigm is that version of building physics which explains hy-

grothermal performance of building envelopes in terms of water vapor diffu-

sion, which uses the steady-state profile method, and which leads to recom-

mendations … for vapor barriers and attic ventilation … the predisposition to-

ward prescriptive guidance inhibited the development of an engineering ap-

proach. 

(Rose, 2003, p. 327) 

It is 40 years since BS 5250 first published the Glaser method (BSI, 1975), 70 years since 

mainstream guidance based on it appeared in the USA and 77 years since it appears to have 

been invented (Rose, 2003). (Strictly speaking, BS 5250:1975 described the dewpoint meth-

od, a predecessor of the Glaser method.) This has allowed generations of building designers 

to absorb the lessons of the approach described by the diffusion paradigm. The diffusion 

paradigm has a cultural aspect that goes beyond the clear limitations of the method and ex-

plains why the Irish and British construction industries rely so heavily on the Glaser method, 

including those building designers and contractors who have never heard of it and are not 

aware that it may influence their thinking. 
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4.4.3.2 Dominance of the Glaser method 

The Glaser method still has a dominant position today: firstly, as basis for guidance docu-

ments in almost every field of construction, except maybe in building conservation and sur-

veying; secondly, as basis for a common understanding of best practice; and, lastly, as basis 

for the design of many construction products. Building conservation and surveying are the 

two fields that deal with building maintenance and failure and, therefore, experience best 

how building fabric actually performs when in use, compared to predicted performance. 

While many conservation professionals are rightly suspicious of applying to traditional con-

struction best-practice approaches developed for new-build construction, some of these 

professionals appear to still be unaware of, or are perhaps reluctant to engage with, numer-

ical simulation as an assessment method which can assist them in conserving and appropri-

ately retrofitting traditional buildings. In mainstream construction, numerical simulation is 

slowly becoming better known, but is foremost popular in niche markets or by users of 

niche products. 

Despite the publication of BS EN 15026 in 2007, despite the availability of a wide range of 

numerical simulation tools over the last two decades and despite the clearly stated limita-

tions of the Glaser method, the Irish and British construction industries have been slow to 

move from the diffusion paradigm towards a fuller understanding of hygrothermal perfor-

mance and the adoption of numerical simulation assessments. There are many reasons why 

the Glaser method is still the preferred assessment tool today, and more efforts are needed 

to convince the construction industry to replace these simplistic tools with the more accu-

rate and often more appropriate numerical simulation assessments. 

The following aspects may be pertinent to the dominance of the Glaser method: 

1. The highly simplified understanding of hygrothermal performance that underpins 

the Glaser method and the diffusion paradigm has significantly influenced the devel-

opment of both building products and technical guidance. Much of its influence is 

unconscious. Dogmatic advice, such as to always place an AVCL on the warm side of 

internal wall insulation regardless of the wall construction type or where the specifi-

cation of internal wall insulation does not consider the substrate and external climat-

ic conditions, is influenced consciously or unconsciously by the simplifications of the 

Glaser method. 

2. Understanding of risk is typically based on past experience. Most of the buildings 

erected over the past fifty years were evaluated using the Glaser methods (or its 

predecessors).  
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3. Most external walls in Britain and Ireland are of cavity wall construction and make 

use of DPCs. Due to the isolation of the inner wall leaf from rain water, liquid mois-

ture is only likely to manifest itself in the form of interstitial condensation or building 

failure, e.g. rising damp, cracks in the building fabric or failing drainage or rain water 

goods. Interstitial condensation can be checked roughly, though not predicted, using 

the Glaser method, due to its focus on vapour diffusion. Other forms of moisture oc-

currence can clearly be dismissed as a failure not subject to any hygrothermal risk 

assessment. Thus, the status quo of the diffusion paradigm can appear unchallenged. 

4. According to BRE study from 2006, 20 % of air that enters a house leaves via the roof 

(by which stage it is no doubt heated air) and 80 % of the water vapour found in lofts 

arrived there by air leakage from below. (Sanders, 2006a, p. 1) Air leakage, particu-

larly through direct paths from inside to outside, will generally remove moisture as 

much as heat, often removing condensate caused by inappropriate layering of ele-

ments in the building fabric. The focus on significantly improving airtightness is rela-

tively new, and the building industry is still learning how to achieve this. Probably 

because of a lack of reported cases, there is an inadequate focus on moisture accu-

mulation that can occur once air leakage has been controlled, due to inappropriate 

layering of elements in the building fabric. The move to far higher levels of insulation 

and airtightness greatly increases the risk of material deterioration and building fail-

ure. 

5. Suppliers of building products may prefer the clear pass/fail results generated by the 

Glaser method. They may also prefer the fact that the method shows that almost 

any type of wall construction will be judged acceptable if it is used with an AVCL (or a 

product as vapour tight as an AVCL) on the warm side of the insulation. 

6. Suppliers of building products can, in a very short time, train their staff to conduct 

Glaser method assessments, using software, and offer this service for free. It can 

then be presented as an added-value service. 

7. Within the construction industry, there is a lack of awareness of the limited applica-

bility of the Glaser method and the availability of numerical simulation as an alterna-

tive. It may be that too few construction professionals actually read the technical 

standards they use, and it appears that building designers rarely insist on numerical 

simulation to assess their designs. The same appears to be true for manufacturers of 

building products, when obtaining third-party assessments of their products, such as 

BBA Agréments. 

Despite these rationalisations, despite the availability of numerical simulation as a more ac-

curate and sophisticated assessment method and despite software tools based on BS EN 
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15026:2007, it is clear that a significant shift needs to take place in the construction sector. 

More balanced guidance is required, current guidance needs to be re-evaluated and much 

of it revised, and efforts must be made to ensure that designers and manufacturers stop us-

ing the Glaser method in cases which are clearly outside its scope. 

4.4.3.3 Achieving the use of appropriate assessment  

The Glaser method is only applicable to specific types of construction and in specific envi-

ronmental contexts. Nonetheless, it is still used today as the preferred hygrothermal as-

sessment method in Britain and Ireland for all types of construction at any location.  

To change this situation, a range of actions should be considered: 

1) In general, the value of risk assessments (whether physical surveys or desktop as-

sessment), the stage at which to undertake them and their role (both value and limi-

tations) in proving suitability and compliance should be given greater prominence in 

the technical guidance documents to building regulations.  

2) Technical guidance, such as BS 5250 and BRE publications, and software tools, such 

as BuildDesk U, should state more clearly the limitations of the Glaser method and 

advise unequivocally when other assessment methods should be used. 

3) Considering that approximately a fifth of the British building stock is of traditional 

construction, expanded guidance on the insulation retrofit of traditional walls should 

be provided in BS 5250 and elsewhere.  

4) More research is needed to fill the knowledge gaps with regard to local climatic con-

ditions, actual indoor environmental conditions, construction materials, the impact 

of construction workmanship and the performance of building fabric under in-service 

conditions – let alone how climate change may impact upon buildings.  

However, the fact that gaps in guidance and knowledge exist should not delay adoption of 

better risk assessment methods. Greater caution should be taken through increasing the 

understanding of the overarching principles. Buildings are hygrothermally complex con-

structions, particularly where traditional walls are used. Therefore, the most appropriate 

assessment methods should be used wherever possible, taking into account their benefits 

but also their limitations: 

even within the limitations of use laid down in BS EN 15026, there is inevitable 

uncertainty, as moisture movement, material properties and human behav-

iour are highly complex and cannot possibly be entirely captured in a model. 

The dictum ‘all models are wrong; some models are useful’ applies here. With 
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that warning and with acknowledgement of the disadvantages and limita-

tions [of the model] , it can be said that BS EN 15026:2007 should be adopted 

wherever possible in the assessment of moisture risk in buildings. 

(Sanders and May, 2014, p. 31) 

4.5 Assessment of mould growth risk 

The hygrothermal assessment methods, discussed in this report, can indicate when and 

where in a building component construction moisture levels can rise to a level that could 

cause deterioration of the building fabric or become a health risk to building occupants 

through mould growth. The different approaches in use today to assess mould growth have 

already been discussed. (Section 3.2.2.1) One such approach is biohygrothermal modelling. 

Computer programs for this are available in the form of postprocessors to numerical simula-

tion software. These postprocessors are essentially software add-ons. For WUFI Pro, the 

postprocessor is WUFI-Bio. These post processing programs use biohygrothermal models to 

simulate mould growth, based on transient environmental conditions: 

In order to assess the risk of mould growth under transient ambient condi-

tions, a novel biohygrothermal method has been developed which is based on 

comparing the measured or simulated transient ambient conditions with the 

growth conditions needed by the fungi usually encountered in buildings. The 

moisture content of the mould spores is simulated and compared with the 

critical water content which allows a spore to germinate. 

(Fraunhofer IBP, 2010) 

Biohygrothermal modelling, as used in WUFI-Bio, has a number of limitations: 

Influence factors such as pH value, salt content, light, oxygen content, surface 

quality and biogenic factors are not considered in the model, instead it is as-

sumed that they do not impede germination and growth. This simplification 

has the consequence that the predicted spore germination times may be 

shorter or the growth rates may be higher than they are under real conditions.  

Please note that this method only aims to assess the risk of mould growth, it is 

not a detailed realistic simulation of the growth processes.  

(ibid., 2010) 
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The model used in WUFI-Bio does also not account for mould regression, but assumes that 

mould, once in existence, is either dormant or grows. (Sedlbauer, 2001) The biohygrother-

mal simulation, in the end, provides results which need interpretations: 

As with all similar calculation methods, assessing the result requires some ex-

pertise as well as common sense. The calculation result is primarily meant to 

provide a semi-quantitative criterion for comparing and ranking construction 

variants. If the spore moisture exceeds the critical water content only by a 

small amount or for a short period, mould growth should not necessarily be 

expected in a real building component, since the model contains a few safety 

factors to make sure that the prediction ‘no mould growth’ can be relied on.  

(Fraunhofer IBP, 2010) 

How an assessment of mould growth risk can look like will be illustrated as part of the case 

study in this report, using WUFI-Bio 3.0. (Section 5.4.1) 

4.6 Assessment of thermal bridging 

A thermal bridge is a localised area where the heat flow is different in comparison with ad-

jacent areas. Thermal bridging can occur at junctions of construction, e.g. where construc-

tion elements abut. (Section 3.1.5.2) The thermal bridge assessment of a junction deter-

mines the additional heat flow associated with that particular junction and its impact on en-

ergy use and condensation risk. The assessment of a linear thermal bridge is performed by 

calculating its linear thermal transmittance (or Ψ-value) and the temperature factor (fRsi). 

The Ψ-value of a construction junction is analogous to the U-value: the U-value is the heat 

loss per unit area of a plane building element, and the Ψ-value is the additional heat loss per 

linear metre of a junction (over and above the U-value of the adjoining plane elements). 

An example of thermal bridging is given in Figure 50, using the junction between a window 

and wall, with a window cill in between. The left diagram in the figure shows the tempera-

ture distribution across the cross section of the construction, with arrows indicating uniform 

and non-uniform heat loss (orange and yellow arrows respectively). The right diagram is a 

graphic representation of the associated heat flow, with the uniform heat flow of the plane 

element (as per U-value) shown in yellow and the additional, non-uniform heat flow due to 

thermal bridging in orange. The figure illustrates that the non-uniform heat flow is greatest 

at the construction junction, but also occurs, to a lesser degree, at adjacent areas. 
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Figure 50 Diagrams illustrating heat flow at a thermal bridge: the junction between a wall 

and a window, with a cill in between. The left diagram, generated with THERM 

5.2, shows the temperature variation across the fabric’s cross section, overlaid 

with arrows for linear and non-linear heat flow (orange and yellow respective-

ly). The right diagram shows the associated heat flow, with linear heat flow in 

yellow and non-linear heat flow in orange.  

Where insulation retrofits are carried out without appropriate consideration of thermal 

bridging, the desired reduction in uniform heat loss can result in an unexpected increase of 

non-uniform heat loss. An internal insulation retrofit can thereby result in the heat loss due 

to thermal bridging increasing manifold, even if the overall heat loss declines. (Little and Ar-

regi, 2011) 

The temperature factor is a ratio of the temperatures used to assess the risk of surface con-

densation or mould growth near a thermal bridge. The factor represents the coldest indoor 

surface temperature relative to the difference of the indoor and outdoor temperatures. A 

temperature factor of close to 1.0 indicates a well-insulated structure. The lower the factor, 

the more severe is the thermal bridging and the higher the risk of mould growth. The exam-

ple in Figure 50 shows a temperature factor (fRsi) of 0.68 at the interior wall surface at the 

height of the cill-wall interface. 

Ψ-value and temperature factor are both properties of a thermal bridge, calculated under 

steady-state conditions and independent of the air temperatures surrounding the assessed 

construction. This allows for simple, direct comparison between different options of retrofit 

details with regard to their impact on thermal bridging. 

The British standard BS EN ISO 10211:2007 describes procedures for calculating both the 

Ψ-value and the temperature factor. (BSI, 2007c) The BRE report Conventions for Calculating 

Linear Thermal Transmittance and Temperature Factors provides additional guidance. (Ward 

and Sanders, 2007) The critical threshold for the temperature factor depends obviously on 
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the use and the associated indoor moisture load of the building. (Section 3.2.1.1) For resi-

dential buildings with normal moisture loads, Ward (2006) recommends that the tempera-

ture factor should not fall below a critical threshold of 0.75. Below this threshold, the risk is 

significantly higher that the localised cold spot created by the thermal bridge will increase 

the nearby relative humidity to levels that could result in mould growth. 

Thermal bridges are inherently two- and three-dimensional. Therefore, they are far too 

complex to be accurately calculated by hand. A number of computer programs are available 

to model thermal bridge details. Modelling software in accordance with BS EN ISO 

10211:2007 must successfully calculate results for both temperature and heat flow that 

agree with stated values for validation examples in that standard. Several software packages 

meet these requirements, including Psi-Therm, AnTherm, HEAT, THERM and TRISCO. THERM 

is a Windows-based, freeware program for modelling steady-state, two-dimensional heat 

transfer. (LBNL, 2014) Originally developed for calculating heat transfer through window 

frames, it can model and calculate complex geometries, unlike many other programs which 

are limited to rectangular geometries. Several independent parties, including the authors of 

this report, have validated THERM 5.2 to BS EN ISO 10211:2007. 

A thermal bridge assessment has been included in the case study of this report to illustrated 

the assessment process. The assessment uses the software THERM 5.2. (Section 5.4.3)  
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5 Case study assessments 

5.1 Base wall, insulation products and assessment scenarios 

5.1.1 Case study context 

In the previous section, different methods and associated modelling tools for hygrothermal 

assessment were discussed. In the following, the differences of these tools will be illustrated 

using, as a case study, a traditional stone wall of a Victorian tenement in Glasgow. The wall 

will be assessed first without retrofit and then with a variety of retrofit options. This will al-

low comparison of the assessment tools on one hand and of different retrofit options on the 

other. 

To investigate the wall’s hygrothermal performance, the following two software tools and 

assessment methods are used: 

 BuildDesk U 3.4, based on Glaser method calculations in accordance with BS EN ISO 

13788:2002 

 WUFI Pro 5.3, based on numerical simulations in accordance with BS EN 15026:2007 

Assessments were undertaken for four very different insulation products, each achieving 

two different target U-value: 0.5 and 0.25 W/(m2∙K). In addition to this, the impact of differ-

ent types of AVCLs and different external material layers will be investigated for some of the 

insulation products. 

Further to these more general hygrothermal assessments, simulations will also be used to 

explore how three specific risks of specific moisture-related damage can be assessed: 

 Risk of mould growth, assessed using WUFI-Bio 3.0, a post-processor for use with 

WUFI Pro 

 Risk of freeze-thaw deterioration, assessed using WUFI Pro 5.3 

 Risk of condensation due to thermal bridging, assessed using THERM 5.2 in accord-

ance with BS EN ISO 10211:2007 

This section provides more details about the base wall and the retrofit options used, con-

cluding with a detailed overview of the assessments to be conducted. The input parameters 

for the assessments, including climatic and material data, are described in Section 5.2. The 

hygrothermal assessments and the risk assessments for moisture-related damage are de-

scribed in Section 5.3 and Section 5.4 respectively. 
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5.1.2 Base wall 

As the case study for this report, a traditionally constructed sandstone wall is used. In its 

original form, i.e. without any retrofit, the wall will be referred to as the base wall. Such a 

wall has previously been retrofitted by Historic Scotland as part of its Refurbishment Case 

Study series. (Historic Scotland, 2014) The building used for the actual retrofit project was a 

tenement building in Glasgow, dating from the 1880s. For the case study, the northwest fac-

ing rear wall of this building was used. (Figure 51 and Figure 52) 

The wall has an overall thickness of about 600 mm, including internal finishes. It is con-

structed from randomly coursed stonework. The squared sandstones are bedded in lime 

mortar. The masonry is exposed externally. For the case study, it was assumed that the in-

ternal wall finish is lime plaster on timber laths, as would have existed originally. The hori-

zontal laths would have been fixed to vertical timber battens. This arrangement leaves air 

cavities in between the battens and between the laths and the masonry (this is shown clear-

ly in Figure 29). The air in these cavities is assumed to be still-standing, i.e. without signifi-

cant air movement. 

The Historic Scotland retrofit project trialled a variety of internal insulation options. Alt-

hough the idea for this case study was based on this actual retrofit project, not all the in-

formation required for hygrothermal modelling was readily available, because no invasive 

investigation of the masonry was undertaken as part of the actual retrofit project. There-

fore, the construction details of the wall and the properties of its materials could not exactly 

be determined. Instead assumptions were made. The case study assessment should there-

fore be interpreted as an exploratory study, rather than an exact simulation of the retrofit 

options installed on site. 

5.1.3 Insulation products 

5.1.3.1 Product selection 

Four insulation products are assessed in the case study: 

1. Cellulose fibres 

2. Aerogel blankets 

3. Phenolic foam boards 

4. Calcium silicate boards 



Historic Environment Scotland Technical Paper 15 

Page 140 of 256 

The first two products were used in Historic Scotland’s retrofit project. Phenolic foam 

boards were assessed as a product used in the mainstream construction industry. And calci-

um silicate boards were investigated because of their unusual hygrothermal properties, 

namely their ability to transport liquid by capillary action. 

 

Figure 51 The idea for the case study was based on a real retrofit project by Historic Scot-

land in a Victorian tenement building in Glasgow.  

 

Figure 52 The case study is based on the rear wall of a Glasgow tenement, constructed as  

randomly coursed masonry with squared sandstones, bedded in lime mortar.  
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5.1.3.2 Cellulose fibres 

Cellulose fibre insulation is made from new or recycled plant fibres. Some cellulose insula-

tion is produced from recycled paper. In the Historic Scotland project, wet cellulose fibres 

were sprayed, in between timber battens, against the wall. This installation ensures that 

there are no air spaces between the cellulose and the masonry. The applied product is per-

meable, hygroscopic and capillary active. The retrofit was finished with gypsum plaster-

board, fixed to the battens. No AVCL was installed in the actual project. (Figure 53) 

 

Figure 53 Cellulose fibre insulation is sprayed against the wall surface, lined with timber 

battens to receive a plasterboard finish.  

5.1.3.3 Aerogel blankets 

Aerogel is a solid derived from a gel, in which the solvent component of the gel has been 

removed with minimal shrinkage or disruption of the material’s structure. (Pérez, 2012) The 

resulting, synthetic material is one of the lightest manufactured solids known, with low den-

sity, ultra-small, air-filled pores and a large surface area. These properties give aerogel a re-

markably low thermal conductivity. The material is highly hydrophobic and not capillary in-

active. It is used as a bead or granulate in a range of applications. As an insulation product 

for use in building construction, aerogel is currently available as a coating on non-woven 

polyester fibre mesh. These aerogel blankets are vapour-open and, due to the aerogel coat-

ing, also highly hydrophobic and capillary inactive. The product used in the Historic Scotland 

project was an aerogel blanket bonded to a gypsum plasterboard. This board product did 

not incorporate an AVCL. The boards were mechanically fixed to metal studs, thereby leav-
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ing a space of still air in between the studs and between the boards and masonry. (Figure 

54) 

 

Figure 54 Aerogel blanket insulation bonded to plasterboards is fixed to metal studwork, 

leaving air cavities in between the studs and between insulation and masonry.  

5.1.3.4 Phenolic foam boards 

Phenolic foam insulation is made from phenolic resin. It has a low thermal conductivity, due 

to encapsulating microscopically small pockets of gas. The insulation product considered in 

this case study is a rigid composite board, consisting of phenolic foam, foil and gypsum plas-

terboard, all bonded together. This board is capillary inactive, impermeable and non-

hygroscopic. For the case study, it was assumed that the boards are mechanically fixed to 

timber battens. This form of installation leaves a space of still air in between the battens 

and between the boards and the masonry. (Figure 55) 
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Figure 55 Phenolic foam insulation bonded to foil-backed plasterboard is fixed to timber 

studwork, leaving air cavities in between the studs and between insulation and 

masonry. 

5.1.3.5 Calcium silicate boards 

Calcium silicate foam is a microporous, low-density material, specifically engineered to be 

highly capillary active. Made from sand, quartz, lime and water, the foamed calcium silicate 

is supplied to the construction industry as a rigid board insulation. The boards are also hy-

groscopic, vapour permeable and highly alkaline. They are fully bonded to the wall using a 

lime mortar-based adhesive (Figure 56). A levelling lime plaster may be necessary where the 

original wall is out of true. This form of installation ensures that there will be no air gap be-

tween the boards and the masonry. A lime based plaster provides the finish. 

The resulting assembly manages room moisture as well as moisture from the wall while per-

forming well in terms of acoustics and fire. 
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Figure 56 Calcium silicate boards are fixed to the masonry with a mortar-based adhesive. 

For the case study, a plaster finish and a levelling plaster coat was assumed to 

provide a level surface.  

5.1.3.6 Product comparison 

To allow easy comparison, Table 7 lists the four insulation products used in this case study, 

with the various characteristics discussed. 

Product  
ID & name 

1. Cellulose  
fibres, sprayed 

2. Aerogel blan-
kets 

3. Phenolic foam 
boards 

4. Calcium  
silicate boards 

Product overview 

Reason for use in 
case study 

used in Historic 
Scotland project 

used in Historic 
Scotland project 

mainstream con-
struction indus-
try 

unusual hygro-
thermal proper-
ties 

Description sprayed cellulose 
fibres, finished 
with plaster-
board 

aerogel-coated 
polyester mesh, 
bonded to plas-
terboard 

board made from 
phenolic resin, 
foil and plaster-
board 

calcium silicate 
boards, finished 
with lime plaster 

Natural or  
synthetic 

natural (plant 
fibres) 

synthetic (aero-
gel & polyester) 

synthetic (phe-
nolic resin) 

natural (sand & 
lime) 

λ value ranges* 
[W/(m∙K)] 

0.035 - 0.046† 
0.040 - 0.045§ 

0.013 - 0.014† 
0.015 - 0.021‡ 

0.020 - 0.025† 
0.029 - 0.041# 

0.045 - 0.065‡ 

Pore structure 
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Pore structure 
content 

air air inert gas air 

Vapour  
resistance 

highly permeable permeable impermeable permeable 

Absorption  
behaviour 

hygroscopic hydrophobic not hygroscopic hygroscopic 

Capillary  
behaviour 

capillary  
active 

capillary  
inactive 

capillary  
inactive 

highly capillary 
active 

AVCL incorpo-
rated in product 

no no yes no 

Installation 

Fixing method bonded to ma-
sonry (no sepa-
rate adhesive) 

mechanically 
fixed to battens 

Mechanically 
fixed to battens 

bonded to  
masonry with 
adhesive 

Studs timber timber timber none 

Room finish plasterboard plasterboard plasterboard wet plastered 

Air gap at insula-
tion / masonry 

no yes yes no 

* λ value ranges for insulating materials, not taking into account AVCLs, plasterboards or polyester meshes 

incorporated into products; sources for value ranges: 
†
EST (2010); 

‡
Gellert *2010a, p.203, tab.8.7); 

§
Gellert 

(2010b, p.236, tab.9.7); 
#
Zeitler (2010p.291, tab.11.3) 

Table 7 Qualitative comparison of the insulation products assessed in the case study 

5.1.4 Assessment scenarios 

5.1.4.1 Scenario selection 

The case study demonstrates not only the different assessment tools, but also illustrates the 

performance differences of different insulation products. The products have therefore been 

assessed for a range of scenarios: 

 use of two different target U-values 

 optional use of three AVCLs with different airtightness levels 

 impact of different external material layers 

5.1.4.2 Target U-values 

Because the primary aim of this case study is to illustrate the use of hygrothermal assess-

ment methods, it was decided that all four chosen insulation products should be compared 

for specific U-values regardless of the typical thicknesses at which they were supplied to the 

market. In other words, the case study does not compare 100 mm of aerogel insulation with 

100 mm cellulose fibre insulation. 
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Instead, two target U-values were chosen, which can be thought of as representing a minor 

retrofit and a major retrofit: 

 a minor retrofit results in a wall construction with a U-value of 0.5 W/(m2∙K) 

 a major retrofit, results in a wall construction with a U-value of 0.25 W/(m2∙K) 

 All four retrofit measures are assessed for both retrofit scenarios, except for the calcium 

silicate insulation which is only assessed for a minor retrofit. This means that eight assess-

ments will be made: for the base wall, four minor retrofits and three major retrofits. 

Table 8 lists these eight assessments, together with the required product thicknesses. While 

insulation boards are limited to various sizes (determined by the manufacturer) other sys-

tems such as sprayed cellulose fibres can be installed in whatever thickness is required. 

However, because the case study is of theoretical nature, such practical aspects are ignored. 

Product 

ID 

Insulation product Target 

U-value 

[W/K∙m2] 

Required 

thickness 

[mm] 

Scenario 

ID 

1 cellulose fibres, sprayed 
0.50 668 1.1 

0.25 754 1.2 

2 Aerogel blanket with plasterboard 
0.50 650 2.1 

0.25 677 2.2 

3 Phenolic foam with plasterboard 
0.50 667 3.1 

0.25 720 3.2 

4 Calcium silicate boards, plastered 0.50 708 4.1 

Table 8 Assessment scenarios as a combination of the chosen retrofit products and 

target U-values, together with required product thicknesses 

5.1.4.3 Use of AVCLs 

Installing an AVCL between plasterboard and insulation is often considered good practice. 

(Stirling, 2002, pp. 32-33) However, to be able to critically review this, some assessments 

are undertaken with and without AVCLs. Three different types of AVCLs are used: 

 polyvinyl chloride (PVC) foil (as often incorporated in phenolic foam boards) 

 Intello membrane (as a relatively novel, advanced product) 

 polythene (PE) membrane (as a product used in mainstream construction industry) 

Whereas the PVC foil and PE membrane have fixed diffusion resistances, the more advanced 

Intello membrane, a proprietary product, has a variable diffusion factor. 
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All four chosen insulation products are assessed without AVCLs. In addition to this, the cellu-

lose fibre retrofit is assessed with both Intello and PE membranes. Phenolic foam boards 

generally incorporate a PVC foil between the foam and the plasterboard. However, to illus-

trate the impact of the foil, the phenolic foam retrofit is assessed with and without a foil. 

5.1.4.4 Impact of external material layer 

The assessment of the 13 previously described retrofit options will focus mostly on the im-

pacts of indoor vapour loads. To investigate the impact of the external wall surface and 

therefore the impact of rain fall on the assessments, all 13 retrofit options will be reassessed 

with three different external material layers. These layers are: 

 Outer wall layer is a less absorptive sandstone (Stone A): this stone will be used for 

the 13 previous assessments and therefore acts as basis for comparison. 

 Outer wall layer is a more absorptive sandstone (Stone B): Stone B replaces Stone A, 

thereby allowing comparison of the impact of these very different stone types. 

 Outer wall layer is an external lime render, applied to the stone layer (Stone A): this 

additional material layer will demonstrate the impact of a render, as a form of an 

additional, protective outer layer. 

The assessments of the external material layers will only be conducted in WUFI, but not in 

BuildDesk U, as the latter does not take account of liquid transport, such as rain water. 

5.1.4.5 Scenario overview 

Table 9 summarises the 13 combinations of retrofit products, target U-values and optional 

AVCLs assessed in the case study. These 13 assessments plus the assessment of the base 

wall were carried out using both BuildDesk U and WUFI, for Glaser method and numerical 

simulation assessments respectively. The 13 retrofit options are further assessed, using 

WUFI only, with three different external wall layers. This results in a total of 16 BuildDesk U 

assessments (13 retrofit options plus three base walls) and 42 WUFI assessments (13 retrofit 

options times 3 external material layers, plus the three base walls). 

The input parameters for these assessments are described in the next section. The actual 

assessments are discussed and analysed thereafter. (Section 5.3) Assessments conducted to 

investigate the risks of moisture-related deterioration are discussed separately. (Section 5.4) 

Product 

ID 

Insulation product Target U-value 

[W/(m2∙K)] 

AVCL Scenario 

ID 

1 Cellulose fibres, sprayed 0.50 
None 1.1.1 

Intello 1.1.2 
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PE 1.1.3 

0.25 

None 1.2.1 

Intello 1.2.2 

PE 1.2.3 

2 Aerogel blanket with plasterboard 
0.50 None 2.1.1 

0.25 None 2.2.1 

3 Phenolic foam with plasterboard 

0.50 
None 3.1.1 

Foil 3.1.2 

0.25 
None 3.2.1 

Foil 3.2.2 

4 Calcium silicate boards, plastered 0.50 None 4.1.1 

Table 9 Assessment scenarios as a combination of retrofit products, target U-values 

and optional use of AVCLs 

5.2 Input parameters 

5.2.1 External climate data 

5.2.1.1 Use in Glaser method 

Any time periods can be used for Glaser method assessments, but the associated standard, 

BS EN ISO 13788:2002, specifies the use of twelve monthly mean values for external tem-

perature and relative humidity. BuildDesk U provides external climate data for a range of 

meteorological stations across the British Isles, with 22 location in Scotland. (Figure 57) The 

figure also shows the complete climate dataset used in the Glaser method assessment for 

the location Glasgow. The set consists of single monthly values for internal and external 

temperatures and relative humidities. It is possible for users to input their own data. 

Regarding the criteria for the selection of a representative year, the recommendations of BS 

5250:2011 are stricter than those of BS EN ISO 13788:2002: 

For most buildings, a once-in-ten-year climate year will be appropriate. For 

particularly sensitive constructions or buildings with vulnerable contents, a 

once-in-twenty or once-in-fifty-year climate year may be considered more ap-

propriate. 

(BSI, 2011, p. 5) 
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Figure 57 BuildDesk U screenshot showing the meteorological stations available for the 

British Isles and the environmental conditions available in the software for the 

location Glasgow with a humidity class setting of Dwelling with low occupancy.  

5.2.1.2 Use in numerical simulation 

Data selection 

For numerical simulations, hourly values are not only required for temperature and humidi-

ty, but also for solar radiation, cloud cover, precipitation, wind direction and wind speed. 

The latter three are used to describe wind-driven rain. 

The standard associated with numerical simulation, BS EN 15026:2007, sets out the criteria 

and preferences for external climate data: 

The external conditions used shall be representative of the location of the 

building. Test reference years for energy design are generally available; as 

these are representative of mean conditions they may not be appropriate for 
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moisture design … If the design of a new building is being assessed, at least 

one year of external conditions appropriate to the most severe likely location 

of the building shall be used. 

(BSI, 2007a, p. 14) 

For new buildings, the preferred option is to use ten years of measured data, relevant to the 

most severe likely location of the building. The second best option is to use a Design Refer-

ence Year dataset, “constructed to cause the most severe conditions likely to occur once 

every ten years”. (BSI, 2007a, p. 14) The least preferred option is to use a Test Reference 

Year dataset, where an annual temperature shift of 2 K is applied to the mean of the whole 

dataset (regardless of its size), keeping the relative humidity unchanged. (The most severe 

conditions may be judged to be in summer or winter, via summer or winter condensation. 

The temperature can therefore be either decreased or increased.) 

The requirement to use severe conditions seems to be relaxed for existing buildings: “If a 

problem in an existing building is being investigated, any data measured at the site of the 

building shall be used, otherwise the data from a similar location.” (BSI, 2007a, p. 14) How-

ever, as the case study assesses for an existing building hygrothermal impacts of retrofits 

which will undoubtedly change the hygrothermal conditions, the more conservative ap-

proach, set out for new buildings, was taken in the case study. 

Although WUFI Pro provides a range of weather data across Europe, it does currently not 

contain climate files, covering the British Isles. (Figure 58) As neither measured data was 

available for the site or a similar location nor access to Test or Design Reference Years for 

Glasgow from the Met Office, a Design Reference Year dataset was generated, representing 

severe conditions. The dataset was generated using the climatological database Meteonorm 

6, provided by Meteotest. 

Meteotest uses proprietary algorithms and triangulation to translate daily climatological da-

ta from weather stations into hourly datasets for anywhere worldwide. To generate hourly 

temperature and global radiation values at a selected location, Meteonorm uses interpola-

tions of measured monthly values from neighbouring locations, coupled with stochastic 

models. 

The stochastic models generate intermediate data having the same statistical 

properties as the measured data, i.e. average value, variance, and character-

istic sequence … The generated data approximates the natural characteristics 

as far as possible. Recent research shows that data generated in this way can 

be used satisfactorily in place of long-term measured data. 

(Meteonorm, 2014, part 2, p. 41) 
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Figure 58 WUFI Pro screenshot showing the meteorological stations of Europe available 

within the software, with the city of Ostend (Oostende), Belgium, circled in red.  

However, it should be noted that “the supplementary parameters are not of the same quali-

ty as the main parameters (global radiation and temperature) and were not validated in an 

equally comprehensive way.” (ibid., part 2, p. 74) This leaves the software user wanting to 

understand whether there are inaccuracies and, if there are, how significant these might be. 

The dataset, generated for use in the case study, was titled Glasgowhour_extreme.wac. It 

was uploaded in the outdoor climate selection window of WUFI Pro. This is illustrated in 

Figure 59, showing also the dominant patterns for solar radiation and wind-driven rain. 
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Figure 59 WUFI Pro screenshot showing basic climatic analysis of solar radiation and 

wind-driven rain for the location Glasgow  

The figure shows that significant amounts of wind-driven rain occurs at the case study loca-

tion. This is not unexpected. Stirling (2002) identifies four different exposure zones for the 

UK: sheltered, moderate, severe and very severe. (Figure 60) Glasgow is located in the se-

vere exposure zone, (whereas all other Scottish cities are in the sheltered or moderate 

zones). 
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Figure 60 Map of the north of the UK with four exposure zones for wind-driven rain: 

Glasgow is marked with a red circle. (Image © Building Research Establish-

ment) 

Comparing measured and synthetic climate data 

Fraunhofer IBP has compared its own climatological data, measured over twenty years at its 

outdoor facility in Holzkirchen, Germany, with a synthetic Design Reference Year, generated 
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in Meteonorm, finding it to be an acceptably close match. In line with the requirements of 

BS EN 15026:2007, the use of climate datasets generated from site measurement or sup-

plied by meteorological services is, of course, be preferred.  

We [Fraunhofer IBP] can confirm that Meteonorm data are generally suitable 

for hygrothermal simulations as long as the emphasis of the investigation is 

not the assessment of wind driven rain effects. The data for driving rain loads 

produced by Meteonorm may not always have the required accuracy. There-

fore, measured data should be used if wind-driven rain has a great influence 

on the hygrothermal behaviour of the considered building component. How-

ever, using the Glaser method under such circumstances would be completely 

inadequate. The European “Glaser” Standard EN 13788 explicitly excludes the 

assessment of building components that may absorb driving rain. 

(Künzel, 2013) 

A comparison by the authors of measured and synthetic climate data for Dublin Airport con-

firms these findings. The diagrams in Figure 61 overlay a Design Reference Year created in 

Meteonorm (in red) with data measured over eleven years, between 1999 and 2010, by Met 

Éireann, the Irish meteorological office (in blue). Although monthly mean values for tem-

perature, relative humidity and rain fall show a remarkably good agreement, it appears that 

Meteonorm’s algorithms result in an underestimation of the amount of wind-driven rain. (It 

would be beneficial to repeat such a comparison for Glasgow to understand if the underes-

timation for wind-driven rain is similar to that of Dublin. Unfortunately, no Glasgow climate 

data were freely available during the writing of this report.)  

The authors find it highly unsatisfactory that Design Reference Years, derived from data ob-

tained from the meteorological offices of Ireland and the UK, are not yet easily available for 

users of numerical simulation software, despite guidance in both countries advising its use. 

Comparing the climate datasets used in the case study 

The two datasets used in the case study for the Glaser method and numerical simulation 

assessments can be compared with each other. Figure 62 presents the temperature data for 

both assessments methods, Figure 63 the humidity data. The comparisons show that, in 

both cases, significant disparities in the used data quantity exist: 8760 reference points per 

year for numerical simulation assessments versus twelve reference points for the Glaser 

method assessments. Reassuringly, however, the monthly values appear to track the medi-

an of the hourly values reasonably well, despite their different origins. 
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Figure 61 Comparison of synthetic climate data from a reference year in Meteonorm 

(red) and the related measured data from 1999 to 2010 (blue), both for Dublin 

Airport. Temperature, relative humidity and rainfall are averaged by month, 

while wind-driven rain is averaged by year over different directions. 

In addition to this quantitative difference, there are two important observations that can be 

made with regard to the use of monthly mean values: 

1. The Glaser method never assesses conditions where rapid temperature changes can 

occur, such as those causing freeze-thaw deterioration. 

2. The Glaser method cannot calculate the impact of the extreme conditions that may 

exist for short periods of time. (While it could be argued that the slow response of 

solid masonry walls to changes in external temperature and relative humidity might 

make use of monthly means acceptable for normal conditions, it takes no account of 

the short-term external climate conditions relevant to buildings, e.g. wind-driven 

rain.) 
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Figure 62 External temperature data used for Glaser method and numerical simulations 

assessments  

 

Figure 63 External relative humidity data used for Glaser method and numerical simula-

tions assessments  
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Building design generally aims to ensure that building elements perform suitably, even un-

der extreme conditions. For example, the sizing of heating systems is based on extreme cold 

temperatures, and structural wind loading calculations are based on extreme gusts. Howev-

er, when assessing the building fabric using the Glaser method, all short-term and extreme 

external conditions ‘fall off the table’ due to the marked averaging and reduction of the cli-

mate data used. 

Impact of exposure and orientation 

Regarding exposure and orientation, BS EN ISO 13788:2002 recommends for assessments 

that “the external conditions used shall be representative of the location of the building, tak-

ing account of altitude where appropriate.” (BSI, 2002a, p. 7) A note in the standard states 

that a drop of 1 K in mean monthly temperature can be assumed for every 200 m increase in 

altitude. No recommendations are given as to otherwise represent external conditions, and, 

of course, no short term events are considered. This suggests that the Glaser method may 

be most accurate when dealing with structures in sheltered locations. 

BS EN 15026:2007 recommends for numerical simulations: 

The external climate file shall include the climate parameters necessary for 

the analysis to be undertaken. A complete set would contain: 

 dry bulb temperature; 

 vapour pressure, or any other humidity parameter that can be used 

to calculate vapour pressure; 

 global and diffuse solar radiation; 

 sky temperature; 

 wind speed and direction; 

 total atmospheric pressure; 

 precipitation (rain, snow, drizzle). 

(BSI, 2007a, p. 14) 

One of the strengths of numerical simulation tools is that the underlying standard recognis-

es that important climate parameters are not only those at the weather station, but also the 

local conditions occurring at the building element to be assessed. In addition to the mini-

mum input requirements of the standard, WUFI Pro also allows inputs for the building’s 
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context, such as urban or in a valley, and the height above ground level. A northwest facing 

wall may experience less wind-driven rain, but may also have a reduced drying ability com-

pared to a southwest facing wall. Equally, wind velocity increases with every few metres 

above ground level. A sloping wall will therefore experience a different load of wind-driven 

rain than a vertical wall. 

WUFI Pro, therefore, provides two options for establishing the wind-driven rain coefficient. 

(Figure 64) The default approach is based on advanced, three-dimensional, computational 

fluid dynamics simulations of droplet flow, based on the inputted data for precipitation, 

wind direction and wind speed. The alternative approach is based on methods described in 

the American standard ANSI/ASHRAE 160-2009. (ANSI and ASHRAE, 2009) In this case study, 

the default approach has been chosen. 

 

Figure 64 WUFI Pro screenshot showing selections possible to localise selected climate 

data for a specific building element, including orientation, inclination, height 

above ground and wind-driven rain coefficient  

5.2.2 Internal climate data 

The internal climate conditions for the case study assessments were determined according 

to the relevant standard in each assessment method. For the Glaser method, BS EN ISO 

13788:2002 recommends the use of 20 ˚C as indoor air temperature. Appendix A of the 
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standard provides a correlation for estimating the internal relative humidity, based on the 

outdoor air temperature. 

The internal vapour loads are described using a categorisation system of humidity classes. 

For the case study, a ‘low occupancy’ setting was assumed, which relates to humidity class 3 

in accordance with BS EN ISO 13788:2002. (Table 10 and Figure 65). 

It is possible, however, that the kitchen or bathroom might be in humidity class 4, particular-

ly if inadequately ventilated. (The classification of humidity classes has been changed for the 

2012 version of BS EN ISO 13788. This case study still uses the 2002 version.) 

Humidity class Building 

1 Storage areas 

2 Offices, shops 

3 Dwellings with low occupancy 

4 
Dwellings with high occupancy, sports halls, kitchens, canteen; build-

ings heated with un-flued gas heaters 

5 Special buildings, e.g. laundry, brewery, swimming pool 

Table 10 Internal humidity classes, as described in BS EN ISO 13788:2002 (BSI, 2002a, p. 

21, table A.1) 

 

 

Figure 65 Correlation between indoor vapour load and outdoor air temperature for in-

ternal humidity classes, as defined in BS EN 13788:2002 (Image © Building 

Standards Institute) 
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While the Glaser method does not allow for short-term extreme external weather condi-

tions, it does raise internal relative humidity to stress conditions within and on the surfaces 

of components to compensate for other inaccuracies. This is done in two ways: firstly, by 

asking assessors to use values at the top of the relevant humidity class band (BSI, 2002a, p. 

21) and, secondly, by adding an additional ‘safety margin’ to the calculated relative humidi-

ty. The reasoning given for use of the safety margin is: 

The calculation method as described in this standard is a steady-state calcula-

tion. In reality, however, external air temperature variations, changing solar 

radiation, hygroscopic inertia and intermittent heating can influence surface 

humidity conditions. This is especially the case for a thermal bridge area con-

sisting of building materials with high thermal inertia. The factor does not in-

clude the behaviour of the occupants, which can have a significant effect on 

ventilation. 

(BSI, 2002a, p. 9) 

This raised internal relative humidity can be clearly seen in comparison with internal condi-

tions as estimated under BS EN 15026:2007 in Figure . The latter’s values, though varying 

much more, are lower than those estimated in the Glaser method. The existence of this 

safety margin is often referred to by those promoting the method as the key feature making 

it both valid and safe for assessing interstitial condensation risk of all types of building ele-

ments. Section 4.3.1 makes clear the limited applicability of the standard to certain element 

types, while Section 5.3.4 illustrates that stressing internal relative humidity does not allow 

one safely estimate risks of moisture accumulation or mould growth. 

BS EN 15026:2007 states that, where possible, measured data should be used for simula-

tion. Fraunhofer IBP has conducted or accessed thousands of measurements of internal res-

idential conditions in different areas. (Künzel, 2013) From this measured data, correlations 

between outdoor temperature, indoor temperature and indoor humidity have been devel-

oped to be demonstrate compliance with BS EN 15026:2007. (Figure 66) In this study, a 

‘normal moisture load’ setting was used. 

When comparing the internal climate inputs of both assessment methods in the graphs of 

Figure 67 and Figure 68, the differences are even greater than when comparing the external 

climates. The reason for this is that the internal conditions are based on different correla-

tions. The steady indoor air temperature of 20 ˚C, recommended for the Glaser method, 

bears no relation to the varying graph for use with numerical simulation, which is influenced 

by the outdoor air temperature. The relative humidity values are also dependent on out-

door air temperature, with higher external temperatures resulting in higher indoor relative 

humidities. As already mentioned, Glaser method values are significantly higher than the 
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median of the 8760 numerical simulation values, showing the influence of the already dis-

cussed safety margin. (The 2012 edition of BS EN ISO 13788 has changed the definition of 

the humidity classes and eliminated the ‘safety factor’.) 

 

Figure 66 Correlation between indoor humidity and indoor and outdoor temperatures 

for simulation in accordance with BS EN 15026:2007  

5.2.3 Geometrical representation and material properties of the base wall 

5.2.3.1 Geometrical representation 

For the case study, a traditionally constructed masonry wall is used. This form of solid wall 

construction is of an inhomogeneous nature, with larger stones forming the wall’s two sur-

faces. These stones are often dressed or squared (i.e. they have at least some plane surfac-

es), and the mortar joints between these stones are therefore relatively thin. The core of 

such a wall, by comparison, consists of a mix of smaller stones in a large quantity of mortar. 

The wall core might also include small, air-filled voids. 

Baker (2010) investigated the impact of this form of construction on U-value calculations, 

estimating that the ratio of materials in a traditional stone wall is 60 % stone to 40 % mor-

tar. 

Because Baker’s research focused on the U-value of the entire wall construction, the loca-

tion of the mortar relative to the stone had little effect, provided the ratios were correct. 

Baker could therefore use an extremely simplified geometrical model for calculations, con-

sisting of only a stone layer and a mortar layer. (Figure 69) 
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Figure 67 Indoor air temperature data used for Glaser method and numerical simulations 

assessments  

 

Figure 68 Indoor relative humidity data used for Glaser method and numerical simula-

tions assessments  
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Figure 69 Schematic illustration of a cross section of a solid stone wall (left) and the sim-

plified geometrical model (right) used in Baker (2011) for U-value calculation. 

For hygrothermal simulation, however, the location of the material layers can have a signifi-

cant impact. Therefore, Baker’s model was modified for this case study, by using two stone 

layers with a mortar layer in between. (Figure 70) This model, although still very simple, rep-

resents more accurately the higher presence of  mortar within the core of traditional 

stonewall construction. The material in the core is known in Ireland as the ‘hearting’ of the 

wall, and trimmings from the facing stones were commonly used for this purpose. 

 

Figure 70 Simplified representation of a solid stone wall construction with a mortar core 

between two stone layers, as used for the hygrothermal assessments in this 

case study. 

The mortar joints between the stones in the inner and outer portions of the wall will affect 

its hygrothermal performance also, as can the local presence of ‘through stones’ (stones 

that tie both leafs together by spanning the full width of construction). For some WUFI ma-

terial data for bricks, the effect of the mortar is already factored into the hygrothermal val-

ues listed. Obviously, such data could also be created for stone masonry, but this not yet 

been done. Assessing inhomogeneous constructions, like a traditional stone wall, more ac-

curately would require a two-dimensional numerical simulation, using software such as Del-

phin or WUFI 2D. While it would not be practical to use two-dimensional simulation in this 

way for every masonry wall, it is important at this early stage in the development of numeri-

cal hygrothermal assessment that the impact of these kinds of choices are tested. For what 

types of stones or bricks and for what shapes and thickness of joints must two-dimensional 

simulation be used? And when is the quicker, easier one-dimensional alternative accepta-

ble? In time, guidance could be drawn up to reflect a large-scale sensitivity analysis of these 
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kinds of issues. As part of the case study, one such comparative assessment of different 

ways of modelling a stone wall has been undertaken. (Section 5.3.2.3) 

5.2.3.2 Material properties 

Data selection 

The wall to be assessed consists of sandstone bedded in lime mortar, with the masonry fin-

ished internally with lime plaster on timber laths. (The timber laths, surrounded by plaster 

on three sides, were ignored in the case study, for the sake of simplicity.) 

Where properties for these materials were available in the WUFI material database, this da-

ta was used in the case study assessment. For the assessments under the Glaser method, 

additional data needed was taken from the standard BS EN ISO 10456:2007 Building Materi-

als and Products – Hygrothermal Properties. (BSI, 2010) A complete set of the materials 

properties required hygrothermal simulation which can be difficult to source. The assessor 

often needs to use data from different sources and of different degrees of reliability. 

In the following, the material properties for the base wall have been identified first. Those 

for the retrofit materials are discussed in Section 5.2.4.2. To allow easy comparison, all  

material properties used in the case study have also been assembled in one table in  

Appendix 4 Material properties used in the case study. 

Sandstone 

For the assessments under the Glaser method, the material properties listed for Sandstone 

(silica) in BS EN ISO 10456:2007 (and also in BS 5250:2011) were used. For hygrothermal 

numerical simulation, the WUFI database was accessed. It lists nine types of sandstones, 

eight of which are German and one is Indian. Selected material properties of these stones 

are listed in Table 11. 

As a bracketing approach (see Section 5.2.3.2) was considered advisable, two of the German 

sandstone types were selected that reflect the basic values of Sandstone (silica): Baumberg-

er and Obernkirchner sandstone. They will be referred to in the case study as Stones A and B 

respectively. Their properties are approximately mid-range in terms of the basic hygrother-

mal values for the German sandstones listed in the database, but vary significantly from 

each other in key hygrothermal functions, namely water absorption and moisture storage. 

  



Historic Environment Scotland Technical Paper 15 

Page 165 of 256 

Stone type Use in 

case study 

Density 

[kg/m³] 

Porosity 

[m³/m³] 

λ-value 

[W/mK] 

µ-value 

[-] 

Rüthener not used 1950 0.24 1.7 17 

Baumberger Stone A 1980 0.23 1.7 20 

Cottaer not used 2050 0.22 1.8 15 

Ummendorfer not used 2080 0.227 1.7 14 

Sander not used 2120 0.17 1.6 33 

Obernkirchner Stone B 2150 0.14 2.3 32 

Worzeldorfer not used 2263 0.13 1.8 26 

Zeitzer not used 2300 0.05 2.3 70 

Average values 2112 0.18 1.86 28 

Table 11 Material properties of the eight German sandstones listed in the WUFI data-

base (in order of their density) and averaged values: the two stones used in the 

case study, Baumberger and Obernkirchner, have been highlighted. 

Within the WUFI database, the moisture absorption characteristics of a material are de-

scribed by its liquid transport coefficient and moisture storage function respectively. These 

two material functions are described for all eight sandstones in Figure 71, illustrating the 

wide range of values possible. The liquid transport coefficient for suction (left diagram in the 

figure) describes how quickly water is wicked into the masonry. Of the two stones chosen 

for the case study (dashed lines in the figure), Obernkirchner sandstone has a mid- to high 

absorption value, while Baumberger sandstone has a mid- to low absorption value. The 

moisture storage function (right diagram in the figure) indicates the relationship of water 

content and relative humidity. Again, the stones’ performances vary significantly. At the 

same relative humidity, Baumberger sandstone stores significantly more water than Obern-

kirchner sandstone. 

Of the two chosen stone types, Baumberger sandstone absorbs water more slowly, but can 

store larger water quantities. This make Obernkirchner sandstone more vulnerable to mois-

ture-related deterioration if its surface is exposed, because it can become saturated quicker. 

(The significant impact that this wide range of hygrothermal values can have on modelling 

results has also been demonstrated by Baker et al. (2014), simulating three of these German 

sandstone types with WUFI.) 
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Figure 71 Capillary liquid transport (left) and moisture storage functions (right) of all 

German sandstones listed in the WUFI database. 

In general, Stone A (Baumberger sandstone) has been used for case study assessments. 

Stone B (Obernkirchner sandstone) has been used in additional assessments to illustrate the 

impact of the different hygrothermal properties of the stones on the simulation results. 

 The properties used for the three ‘stone types’ are listed in Table 12. 

Material properties  Sandstone  

(silica) 

Stone A  

(Baumberger) 

Stone B  

(Obernkirchner) 

Bulk density [kg/m3] 2600 BS 1980 WD 2150 WD 

Porosity [m3/m3] n/a 0.23 WD 0.14 WD 

Specific heat capacity [J/(kg∙K)] 1000 BS 850 WD 850 WD 

Thermal conductivity [W/(m∙K)] 2.3 BS 1.7 WD 2.3 WD 

Vapour diffusion  
resistance factor 

[-] 30-40 BS 20 WD 32 WD 

Free water saturation 
(100 % RH) 

[kg/m3] n/a 210 WD 110 WD 

Liquid transport  
coefficient 

[m2/s] n/a 3 x 10-7 WD 2.3 x 10-6 WD 

Data provenance: BS: BS EN 10456 / WD: WUFI data 

Table 12 Properties of stone, including data provenance 
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Mortars and plasters 

For the mortar and render, the option Lime Mortar, Fine has been selected in the WUFI ma-

terial database. For the lime plaster, Lime Plaster has been chosen. The relevant material 

properties are listed in Table 13. (In the case study, the plaster is referred to as ‘lime plaster 

(general)’ to distinguish it from a product used in the installation of the calcium silicate 

boards.) 

Material properties  Lime mortar 

(general) 

Lime plaster 

(general) 

Bulk density [kg/m3] 1785 WD 1600 WD 

Porosity [m3/m3] 0.28 WD 0.3 WD 

Specific heat capacity [J/(kg∙K)] 850 WD 850 WD 

Thermal conductivity [W/(m∙K)] 0.7 WD 0.7 WD 

Vapour diffusion resistance factor [-] 15 WD 7 WD 

Free water saturation (100 % RH) [kg/m3] 247.6 WD 250 WD 

Liquid transport coefficient for suction 
at 100% RH 

[m2/s] 1.63 x 10-6 WD 1.5 x 10-7 WD 

Data provenance: BS: BS EN 10456 / WD: WUFI data 

Table 13 Properties of mortar and plaster of base wall, including data provenance 

Air cavities 

Cavities can result from the creation of traditional plaster and lathe assemblies or from 

modern insulation and batten assemblies. These cavities are assumed to be air-filled and 

unvented. The ‘material’ properties used in the assessments for air are listed in Table 14. 

Material properties  Air 

Bulk density [kg/m3] 1.3 WD 

Porosity [m3/m3] 0.999 WD 

Specific heat capacity [J/(kg∙K)] 1000 WD 

Thermal conductivity [W/(m∙K)] 0.155§ WD 

Vapour diffusion resistance factor [-] 0.51 WD 

Free water saturation (100 % RH) [kg/m3] 0 BS 

Liquid transport coefficient [m2/s] 0 WD 

Data provenance: BS: BS EN 10456 / WD: WUFI data 
§ for air cavities, an equivalent thermal conductivity is assumed to account for convective and radiative heat 

transfer 

Table 14 Properties of air, including data provenance 
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5.2.4 Geometrical representation and material properties of retrofits 

5.2.4.1 Geometrical representation 

The retrofit of four insulation products is discussed in this case study. The products and their 

installation have has already discussed in the Section 5.1.3. Each retrofit measure consists of 

several materials, which are represented as vertical layers added to the inside surface of the 

base wall. Depending on the insulation product, the materials include insulation, plasters, 

plasterboards, adhesives, vapour barriers and air cavities. The geometrical models of the 

retrofitted base wall, as used in the case study assessments including material thicknesses, 

are described in Table 18. 

5.2.4.2 Material properties 

The properties of the materials used in the base wall have already been defined. The mate-

rial properties of the retrofits are listed in the tables below, together with the data prove-

nance. Table 15 lists the material properties for insulation, Table 16 those for vapour barri-

ers and AVCLs and Table 17 those for adhesives and plasters. As before, the data chosen for 

the assessments is partly taken from the British Standard and partly from the WUFI data-

base. A complete list of all material properties used in the case study is available in 

Appendix 4 Material properties used in the case study. 

Material properties Cellulose 

fibres 

Aerogel 

blanket 

Phenolic 

foam boards 

Calcium sili-

cate boards 

Bulk density [kg/m3] 50 MD 146 WD 43 BS 222 MD 

Porosity [m3/m3] 0.95 MD 0.92 WD 0.95 WD 0.92 MD 

Specific heat  
capacity 

[J/(kg∙K)] 2000 MD 1000 WD 1400 BS 1303 MD 

Thermal conduc-
tivity 

[W/(m∙K)] 0.04 MD 0.014 WD 0.023 BS 0.057 MD 

Vapour diffusion  
resistance factor 

[-] 1.8 MD 4.7 WD 50 BS 5.4 MD 

Free water satu-
ration (100 % RH) 

[kg/m3] 426 WD 213 WD 0 WD 815 MD 

Liquid transport  
coefficient 

[m2/s] 2.3 x 10-7 
WD 

1.3 x 10-11 
WD 

0 WD 4.9 x 10-6 
MD 

Data provenance: BS: BS EN 10456 / MD: manufacturer’s data / WD: WUFI data 

Table 15 Properties of the insulation, including data provenance 
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Material properties Intello 

membrane† 

PE mem-

brane† 

PVC foil  

facing† 

Bulk density [kg/m3] 115 WD 130 WD 130 WD 

Porosity [m3/m3] 0.086 WD 0.001 WD 0.001 WD 

Specific heat capacity [J/(kg∙K)] 2500 WD 2300 WD 2300 WD 

Thermal conductivity [W/(m∙K)] 2.4 WD 2.3 WD 2.3 WD 

Vapour diffusion resistance factor [-] 26000 WD 50000 BS 20000 MD 

Free water saturation (100 % RH) [kg/m3] 85 WD 0 WD 0 WD 

Liquid transport coefficient [m2/s] 0 WD 0 WD 0 WD 

Data provenance: BS: BS EN 10456 / MD: manufacturer’s data / WD: WUFI data 
† Foils are listed as being 1 mm thick for the sake of simulation; the actual sd values are divided by 0.001 m. 

Table 16 Properties of the vapour barriers and AVCLs, including data provenance 

Material properties Adhesive 

(for CSB‡) 

Gypsum 

plaster-

board 

Gypsum 

fibre-

board 

Lime 

plaster 

(general) 

Lime 

plaster 

(for CSB‡) 

Bulk density [kg/m3] 1410 MD 700 BS 1153 WD 1600 BS 1600 MD 

Porosity [m3/m3] 0.468 MD 0.65 WD 0.52 WD 0.3 WD 0.3 MD 

Specific heat  
capacity 

[J/(kg∙K)] 1059 MD 1000 BS 1200 WD 1000 BS 850 MD 

Thermal conduc-
tivity 

[W/(m∙K)] 0.06 MD 0.21 BS 0.32 WD 0.8 BS 0.7 MD 

Vapour diffusion 
resistance factor 

[-] 22.89 MD 8.3 BS 16 WD 10 BS 7 MD 

Free water satu-
ration (100 % RH) 

[kg/m3] 280 MD 400 WD 502 WD 250 BS 250 MD 

Liquid transport 
coefficient 

[m2/s] 7 x 10-10 
MD 

4.5 x 10-6 
WD 

1.1 x 10-9 
WD 

1.5 x 10-7 

WD 

1.5 x 10-7 
MD 

Data provenance: BS: BS EN 10456 / MD: manufacturer’s data / WD: WUFI data 

Table 17 Properties of adhesives and plasters used in the installation of the retrofits, 

including data provenance 

 



Historic Environment Scotland Technical Paper 15 

Page 170 of 256 

Wall part Layer Material including simulation alternatives Width* [mm] 
   Layer Subtotal Total 

B. Base wall 

masonry 

stone  Stone A Stone B 180 

600 

650 

mortar core lime mortar (general) 240 

stone Stone A 180 

original fin-

ish 

air air (unvented cavity) 25 
50 

plaster lime plaster, general use 25 

1. Base wall retrofitted with cellulose fibre insulation, sprayed 

retrofit render lime mortar (general) 20 20 20 

masonry 

stone  Stone A 180 

600 

669.3/755

.5 

mortar core lime mortar (general) 240 

stone Stone A 180 

retrofit 

insulation cellulose fibres, sprayed 55.8/142  

69.3/155.

5  
AVCL Intello membrane PE membrane 1 

plaster gypsum plasterboard 12.5 

2. Base wall retrofitted with aerogel blanket insulating boards 

retrofit render lime mortar (general) not applicable 20 20 20 

masonry 

stone  Stone A Stone B 180 

600 

651/678.5 

mortar core lime mortar (general) 240 

stone Stone A 180 

retrofit 

air air (unvented cavity) 25 

51/78.5 insulation aerogel blanket 16/43.5 

plaster gypsum plasterboard 2 10 
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3. Base wall retrofitted with phenolic foam insulating boards 

retrofit render lime mortar (general) 20 20 20 

masonry 

stone  Stone A 180 

600 

668.5/721 

mortar core lime mortar (general) 240 

stone Stone A 180 

retrofit 

air air (unvented cavity) 25 

68.5/121 
Vapour barrier PVC foil facing 1 

insulation phenolic foam board 30/82.5 

plaster gypsum plasterboard 12.5 

4. Base wall retrofitted with calcium silicate insulating boards 

retrofit render lime mortar, general use not applicable  20 20 20 

masonry 

stone  Stone A Stone B 180 

600 

688 

mortar core lime mortar (general) 150 

stone Stone A 200 

retrofit 

plaster 

 
adhesive  

5 

 
88 

insulation calcium silicate board 79 

plaster lime plaster  4 

Colour coding: grey shades: stone and mortar (bedding, pointing and rendering) / blue: air cavities / orange: vapour barrier or AVCL / green: plasters, in-

cluding plasterboards and adhesive mortars / yellow: insulation 

Hatched areas indicate material options used in the assessments for comparison 
* Where two widths are stated, the first is used in assessments for target U-values of 0.5 W(K∙m2), the second for those of 0.25 W(K∙m2). 

Table 18 Layers used in the simulation models for the base wall and the four retrofit measures 
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5.3 Hygrothermal assessments 

5.3.1 Glaser method assessment of the base wall 

For this case study, all interstitial condensation risk assessments using the Glaser method 

have been carried out using the software BuildDesk U 3.4 and following the procedure set 

out in BS EN ISO 13788:2002. Prior to assessment, the construction of the base wall has 

been entered into the software. (Figure 72) 

 

Figure 72 BuildDesk U screenshot showing model of the base wall with the following lay-

ers (starting on the left): stone, mortar core, stone, air space (light blue colour) 

and plaster  

The software automatically determines the critical point for condensation to assess the in-

terstitial condensation risk, based on surface temperature. Figure 73 shows the results of 

the assessment, using a low occupancy setting. With its visual interface, BuildDesk U is easy 

to use, displaying results clearly with either green checkmarks or red crosses. It is easy to 

understand why this assessment tool has been embraced by many in the construction in-

dustry. 

The base wall was assessed for a twelve month period always starting in October. The as-

sessment indicates that, during this period, interstitial or surface condensation is not a con-

cern. Although the assessment shows that the interface between the mortar core layer and 

the outside stone layer would drop below the dewpoint during the winter months, the 

warmer spring temperatures allow this accumulated condensation to evaporate completely 

by March. 
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Figure 73 BuildDesk U screenshot showing the results from the Glaser method assess-

ment of the base wall, for a low occupancy setting. 

In Figure , under the green checkmark for interstitial condensation, the software states: 

“The risk of degradation of building materials and deterioration of thermal performance as a 

consequence of the calculated maximum amount of moisture shall be considered according 

to regulatory requirements and other guidance in product standards.” This statement is only 

displayed, when a month with moisture accumulation occurs. Changing the occupancy set-

ting to high results in greater interstitial condensation. (Figure 74) 

 

Figure 74 BuildDesk U screenshot showing the results from the Glaser method assess-

ment of the base, for a high occupancy setting. 
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For this increased condensation to evaporate completely out will now take until June, in-

stead of March. This time, the software displays a warning that surface condensation is like-

ly and surface temperatures will need to be increased to avoid this. 

Ground, rain or surface water transport do not feature in BuildDesk U, as the transport of 

liquid is not accounted for in Glaser method. 

5.3.2 Numerical simulation assessment of the base wall 

5.3.2.1 Humidity, moisture and temperature fluctuation 

For this case study, all numerical simulations have been carried out using the software WUFI 

Pro 5.3. Similarly to BuildDesk U, the construction of the base wall should be entered into 

WUFI prior to simulation, using the simplified geometrical model described in the Section 

5.2.3.1. (Figure 75) 

 

Figure 75 WUFI screenshot (excerpt) showing model of the base wall with the following 

layers (starting on the left): stone, mortar core, stone, air space (light blue col-

our) and plaster. 

As with the Glaser method assessment, a first run of the numerical simulation indicates that 

the base wall is performing within usual parameters. (This includes a relative humidity of the 

room surface which is notably higher than the ambient relative humidity – a condition that 

could lead to surface condensate at thermal bridges if the room were regularly occupied, 

heated and moisture released.) Establishing a sufficiently accurate moisture content for 

wide masonry walls is critical at this stage as the annual fluctuation can take years to reach 

equilibrium, i.e. reach a steady annual performance cycle, if set at inaccurate levels initially. 

This is particularly the case if a vapour retarding insulation or membrane is included on the 

room side of the model. The simulation of the uninsulated wall was thus run for a period of 

20 years. (The authors find that seven years is often an adequate length for solid walls, 

though one 900 mm wide concrete wall took 70 years to reach equilibrium.) (Figure 76) 
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Figure 76 Total water content of base wall simulation with WUFI, for a 20 year simulation 

period (7300 days in total, with 365 days per year) to eliminate the influence of 

assumed initial moisture in the existing construction. 

Once the construction reaches equilibrium, it is possible to compare the results of the Gla-

ser method assessment to the annual performance calculated with the numerical simula-

tion. The Glaser method predicted condensation, i.e. 100 % RH, at the interface between 

the mortar core layer and the outside stone layer for three months of the year when a low 

occupancy setting is selected, and for five months when high occupancy is used. A normal 

moisture load was selected in WUFI, in accordance with recommendations for dwellings 

with ventilation systems. (Fraunhofer IBP, 2010) Figure 77 shows the temperature and rela-

tive humidity at this location, based on the numerical simulation for one year. 

The numerical simulation results show that the relative humidity at this location of the wall 

is extremely high throughout the year (see green line in the figure). However, the high hy-

groscopicity of the mortar and sandstone ensures that vapour is absorbed as liquid by the 

pore walls of the materials before the relative humidity rises high enough for condensation 

to occur. Capillary action transports liquid away from this location, redistributing it within 

the material. This reduces the amount of vapour present and maintains the relative humidi-

ty level below 100 %. 

Figure 78 shows the fluctuation of the wall’s moisture content during the cycle of one year, 

demonstrating that the wall is actually maintaining various amounts of moisture throughout 

this period. Whereas the Glaser method assessment does not account for the wall’s mois-

ture content, other than vapour and condensed vapour transporting through it, the hygro-

thermal simulation shows a varying moisture content due to several moisture transport 

mechanisms that is quite close to what happens in reality. 
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Figure 77 Temperature and relative humidity, as simulated with WUFI for one year, at 

the interface between the external stone and mortar core layers. 

 

Figure 78 Fluctuation of total water content of the base wall, as simulated with WUFI for 

the period of one year. 
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5.3.2.2 Water content and relative humidity 

Using WUFI to generate a wall profile can paint a clearer picture of what is happening in the 

wall hygrothermally. Such a profile, a snapshot in time, is illustrated in Figure 79, showing 

fluctuations of temperature, relative humidity and water content simultaneously. The outer 

portion of the outside stone layer (left in the diagram) shows significant variations in water 

content. (See the light blue shadow tracing the water content levels of the annual cycle) 

If the water absorption ability of the wall surface were reduced or inhibited, e.g. by a good 

render, the water content at this location would also be reduced. The profile graph of the 

relative humidity continues across all material layers of the wall in an arc, smoothly drop-

ping to the inside. However, the figure also shows a striking drop in the water content for 

the mortar core layer. The reason for this is that the mortar has a lower moisture storage 

function, which means that, for the same relative humidity, it would store less water. 

 

Figure 79 WUFI screenshot showing relative humidity, temperature and water content 

profiles of the base wall, taken as a snapshot at a single one-hour time-step in 

April. 

The majority of the rain water is retained within the outer portion of the outside stone layer 

and allowed to evaporate from the external wall surface. The small quantity of moisture 
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that does move through the entire thickness of the masonry to the inside (during which 

time it may change state more than once) diffuses through the final few millimetres of the 

room surface and is taken away by air currents in the room. While this is only a small por-

tion of the total moisture content, it is important to acknowledge its existence. When inter-

nal insulation retrofits prevent roomside moisture evaporation and cool the masonry, the 

relative humidity and, as consequence, moisture content will rise, as will be demonstrated 

in Section 5.3. 

Figure 80 is of the same snapshot in time as the previous figure, but shows the wall’s vapour 

pressure profile (coloured in magenta) instead of relative humidity. While the internal va-

pour pressure (ca. 11 hPa) is indeed higher than the external pressure (ca. 9 hPa), the pres-

sure is highest in the centre of the wall (ca. 13 hPa). Therefore, rather than a vapour pres-

sure differential driving accumulated vapour through the wall from the interior to the exte-

rior, as assumed in the Glaser method, the differential here is actually driving vapour out of 

the wall in both directions. 

 

Figure 80 WUFI screenshot showing temperature, water content and vapour pressure 

profiles of the base wall, taken as a snapshot at a single one-hour time-step in 

April. 
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This phenomenon of centre-of-wall vapour pressure exceeding both the external and inter-

nal vapour pressures occurs for most of the year. Figure 81 compares the vapour pressure in 

the wall centre to that at the external and internal wall surfaces. For more than 80 % of the 

year the centre of this wall has the highest vapour pressure and is therefore driving vapour 

outwards in both directions. This is contrary to the general perception in the construction 

industry that vapour moves outwards only. 

 

Figure 81 Vapour pressures at the exterior and interior surfaces of the wall and at the 

centre of its mortar core layer  

5.3.2.3 Validity of the one-dimensional model 

The numerical simulations in this case study are based on a one-dimensional model of a wall 

with a mortar core layer. The stone and mortar chosen for the assessment have distinctly 

different moisture storage properties. However, the amount of moisture that these materi-

als can store also depends on how easily water can be redistributed through capillary action. 

It was shown that in a one-dimensional simulation, the outer portion of the external stone 

layer acts as a continuous buffer that slows down the redistribution of moisture to the mor-

tar core layer. This model gives an apparent hygrothermal advantage that may not be realis-

tic, because, in reality, each stone is surrounded by mortar. These mortar joints form a net-

work, which also connects the mortar core to the outdoor environment. 

In order to assess the validity of the one-dimensional approach, used in this case study, 

three different wall models will be compared with increasing levels of accuracy. (Figure 82)  
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Figure 82 Three conceptual geometrical models of the existing wall and their translation 

into WUFI simulation models, with increasing levels of accuracy starting at the 

top (compare to Figure 69)  

The models are: 

 one-dimensional model of a wall, disregarding any mortar 

 one-dimensional model of a wall with a mortar core layer, but with no mortar joints 

(which is the base wall model used in this case study) 

 two-dimensional model with mortar joints and a mortar core 

Figure 83 shows the water content profiles for these three models. Figure 84 shows their 

relative humidity profiles. To avoid convergence errors in the two-dimensional simulation, 

the moisture storage property of the mortar has been approximated. For the sake of con-

sistency, the same value has been applied to the one-dimensional model with a mortar core 

layer. 
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Figure 83 Total water content of the three wall models, generated with WUFI for a seven 

year simulation period  

 

Figure 84 Relative humidity of the three wall models, at the interior wall surface (plaster 

surface), generated with WUFI for a seven year simulation period  

The comparison of the simulations shows that the one-dimensional model with the mortar 

core remains close to the two-dimensional model: both curves follow closely a similar pat-

tern, and, once a steady annual cycle is reached, variations in values remain within an ac-

ceptable tolerance. Comparing the two-dimensional and one-dimensional with mortar core 

models, the maximum difference in water content is less than 1 kg/m³ and that of the rela-

tive humidity less than 3%. On this basis, the one-dimensional model with three layers –

stone, mortar core, stone– can be considered sufficiently accurate to allow the use of one-

dimensional simulation for this case study. 

5.3.3 Glaser method assessments of the retrofitted wall 

Thirteen different scenarios were assessed in the case study, for combinations of two target 

U-values and the optional use of AVCLs. (Table 6-3) As with the Glaser method assessment 
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of the base wall, a one-year period was used. The occupancy was set to low. Layers of high 

thermal resistance, i.e. insulants were sub-divided into equal thickness with thermal re-

sistance not greater than 0.25 (m2K)/W, as per ISO standard. 

The results of the assessments are presented in Table 19. This shows which retrofit scenari-

os have passed the checks for interstitial and/or surface condensation, together with the 

maximum moisture accumulated at any time in the year, the final figure accumulated at the 

end of the twelfth month, i.e. September, and how many months are condensate free. 

Retrofit 
product 

Target 
U-value 

AVCL Sce-
nario 
ID 

Condensation risk Accumulated condensate 

surface intersti-

tial 

months 

free 

max. final 

 W/(m
2
∙K)    - g/m

2
 g/m

2
 

cellulose 

fibres, 

sprayed 

0.50 

none 1.1.1 √ X 0 4042 1325 

Intello 1.1.2 √ √ 11 1 0 

PE 1.1.3 √ √ 12 0 0 

0.25 

none 1.2.1 √ X 0 3372 2450 

Intello 1.2.2 √ √ 5 34 0 

PE 1.2.3 √ √ 12 0 0 

aerogel 

blankets 

0.50 none 2.1.1 √ X 0 2889 543 

0.25 none 2.2.1 √ X 0 3084 2115 

phenolic 

foam 

boards 

0.50 
none 3.1.1 √ √ 1 408 0 

foil * 3.1.2 √ √ 4 254 0 

0.25 
none 3.2.1 √ X 0 227 66 

foil * 3.2.2 √ X 0 231 95 

calcium 

silicate 

boards 

0.50 none 4.1.1 √ X 

0 1003 58 

Table 19 Results of Glaser method assessments for all retrofit scenarios, with those 

passing both interstitial and surface condensation checks highlighted in green. 

(In actual construction, where a foil is used facing a void the effective U-value 

would be slightly lower than that listed, due to reduced radiant heat transfer 

within the void. This would only have a minimal effect in the overall hygro-

thermal performance of the wall, and for the sake of simplicity, the U-value is 

shown unchanged.) 

Only six of the thirteen assessments pass the checks for both interstitial and surface con-

densation risks. For all other seven scenarios, the Glaser method assessment calculates an 

accumulation of moisture, albeit to different degrees. Only the cellulose fibre retrofit with 
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an AVCL passes for both target U-values. The phenolic foam board retrofit passes for the 

higher, less challenging, U-value level, whether a foil membrane is present or not, but fails 

at the lower, more challenging, level even when a foil membrane is used: this is explored 

below. The aerogel blanket retrofits, which do not feature vapour resistant barriers, fail the 

interstitial condensation risk assessment for both U-value levels, but interestingly the calci-

um silicate board, which also has no membrane, dries completely by the tenth month de-

spite registering quite a high amount interstitial condensate in March. 

As three key tenets of the Glaser method are that: 

1. The only form of moisture considered is vapour that has condensed at 100 % RH. 

2. This vapour is either from the room or the external environment. 

3. Each month’s calculation uses an interior and exterior set of temperature and rela-

tive humidity values. 

It is not surprising that the Glaser method always shows vapour moving from the room in 

the temperate conditions of Maritime Europe, and that vapour resisting layers always re-

duce the condensation risk in assessments. As will be seen below, the presence of a vapour 

resisting layer is not enough, it must have sufficient vapour resistance and be in the right 

location too. Nonetheless retrofitting a solid stone wall without a vapour resistant layer(s) 

will always appear to present unacceptable risks when assessed using the Glaser method. 

In these assessments, the location at which the dewpoint occurs is usually the back of the 

insulation. Only in the case of calcium silicate do two dewpoint conditions occur at one time 

(the interface of original plaster and masonry and the interface of original plaster and insu-

lation). If the insulation is permeable, such as aerogel blankets or cellulose fibres, vapour 

loads at this location will relate to that of the indoor space. The more vapour resistant the 

applied assembly is made, the less vapour reaches the critical location from the room. 

The phenolic foam board retrofits (scenarios 3.1.1 to 3.2.2) demonstrate the importance of 

knowing the materials used. Phenolic foam has a high vapour resistance, compared to the 

other insulations used in the case study. This makes each part of it behave like a weak va-

pour barrier or retarder, even when no foil is incorporated. (In reality phenolic foam board 

is always sandwiched between either fibreglass or foil facings as part of its manufacturing 

process. To give a better thermal resistance to the void the composite board often has the 

following layers from inside to outside: plasterboard on fibreglass facing, on phenolic foam, 

on foil facing). To achieve the less challenging target U-value (0.5 W/(m2
∙K)), a retrofit with a 

thickness of 30 mm foam insulation is required. This would result in the most vapour re-

sistant layer in the retrofitted masonry wall being the foam with an sd-value of 1.5 m (see 

scenario 3.1.1 in Table 17). If foil is used, it instead becomes the most vapour resistant layer 
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with an sd-value of 20 m (scenario 3.1.2), 13 times more vapour resistant than the foam 

board alone. For the more challenging target U-value (0.25 W/(m2
∙K)), 83 mm of phenolic 

foam is required with an sd-values of 4.15 (scenario 3.2.1). The foil in scenario 3.2.2 is now 

only 4.5 times more vapour resistant than this thicker foam board but the air cavity and wall 

behind are much colder.  

In the Glaser Method assessment the phenolic foam retrofit without foil and a U-value of 

0.5 W/m2K (scenario 3.1.1) shows 408 g/m2 of moisture forming on the face of the original 

plaster in the six months up to March. (Figure 85) But the steadily rising external tempera-

tures after that month increases the amount of vapour capable of being held in the air at 

the critical point, i.e. raises the saturation vapour pressure, enabling evaporation till the 

point when condensate has disappeared. In scenario 3.1.2 the dewpoint temperature, the 

temperature at which 100 % RH occurs, is still at the cool void-plaster interface, but the use 

of a foil facing causes condensate to form within the insulation on the foil’s warm side. 

 

Figure 85 A partial screen shot from BuildDesk U showing the outputs of the July calcula-

tions of scenario 3.1.1 graphically, with the point of condensation circled  

The next two scenarios (3.2.1 and 3.2.2) are primarily different because the void and original 

plaster behind the increased insulation are now significantly closer to external temperatures 

than before resulting in higher relative humidity there. However, as before, the use of foil 

moves the point of condensate from the void-plaster interface (227 g/m2 in scenario 3.2.1) 

to the foil-insulation interface (231 g/m2 in scenario 3.2.2). (Figure 86) It may be suggested 

that condensate forming within a non-hygroscopic insulant in this way is a sign of bad de-

sign: The most vapour tight layer should always be on the warm side of an insulant to pro-

tect it. 
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Figure 86 A partial screen shot from BuildDesk U showing the outputs of the July calcula-

tions of scenario 3.2.2 graphically, with the point of condensation circled  

Calcium silicate assembly provides another interesting case: despite having no evident va-

pour barrier and being very vapour permeable it performs surprisingly well in the Glaser 

method. The largest moisture accumulation at the insulation-original plaster interface is 

1,003 g/m2 and 336 g/m2 at the masonry-original plaster interface yet by the end of the 

tenth month (July) all dew has evaporated from the first interface and only 58 g/m2 remains 

at the second by the end. Two reasons are proposed to explain this: firstly the new wet plas-

ter finish facing the room acts as a vapour retarder reducing the amount of vapour entering 

the assembly, and secondly the area on which dew forms is far larger meaning that evapora-

tive drying can occur more effectively once external temperatures raise the saturation va-

pour pressure sufficiently at this point. (Figure 87) 

 

Figure 87 A partial screen shot from BuildDesk U showing the outputs of the July calcula-

tions of scenario 4.1.1 graphically, with the line of condensation marked  
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Accepting the different but interesting cases of calcium silicate and phenolic foam assem-

blies, the vapour permeable insulation strategies (without membranes) register the greatest 

moisture accumulation after twelve months, ranging from 543 to 2,450 g/m2. This is not 

surprising. As a general rule, Glaser method assessments will give positive results to any 

form of construction with a high enough vapour resistance to its room side. For complete-

ness, it should again be noted that vapour diffusion is the only moisture transport allowed 

for in the Glaser method: short term events like driving rain, freeze-thaw cycles and reverse 

diffusion (the reversal of vapour diffusion during periods when radiative heat gain on the 

wall surface raises temperature above the room) are not accounted for in Glaser method. A 

full exploration of the limitations is discussed in Section 4.2.1. 

5.3.4 Numerical simulation assessment of the retrofitted wall 

5.3.4.1 Impacts of internal insulation retrofits 

Relative humidity as an indicator for risk 

Numerical simulation assessments were undertaken for all 13 retrofit scenarios. In numeri-

cal simulation wall constructions should be simulated until they reach equilibrium or fail un-

questionably. While three years is normally enough time for equilibrium to be reached for a 

lightweight structure, several decades might be required for an especially thick masonry 

wall. All cases discussed below have been simulated for fifteen years, though only six or 

eleven years are shown in the diagrams, depending on the length of time required to reach 

equilibrium. To accurately reflect the moisture content in the existing wall, the initial mois-

ture content profile for the retrofit simulations was the final (moisture) profile obtained 

from the base wall simulations after equilibrium was reached. 

In the following sections, the results from the simulations will be described and discussed, 

assessing relative humidity levels at the interface between insulation at masonry. In numeri-

cal simulation, there is recognition that the full hygroscopic characteristics of the materials 

generally prevents condensation forming at this critical location. However, high relative hu-

midity levels can equally lead to mould growth or moisture-related damage. Relative humid-

ity levels of 80 % and 95 % RH will be presented as appropriate in the discussion of different 

simulation results. (Section 3.2.2.1) 

Figure 88 describes the changes of the relative humidities over time for all 13 retrofit sce-

narios. For these assessments, Stone A was used as material for both stone layers. 
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Figure 88 Relative humidity levels for the different retrofit options at the condensation 

critical location, namely the insulation-masonry interface, generated with WU-

FI using Stone A (The numbers behind the materials refer to the target U-values 

of 0.25 or 0.5 W/(m2
∙K).)  
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The first observation to note is that, in all assessments, relative humidity rises due to a cold-

er original substrate after internal insulation is applied. This increase is not necessarily a sign 

of failure, as long as an increase in humidity eventually reaches an equilibrium within ac-

ceptable conditions. The key for assessing suitability is to establish how much RH increases 

and what the implications of the new conditions could be. With regard to reaching equilibri-

um, the permeable retrofit options (cellulose fibres, aerogel blankets and calcium silicate 

boards –all without AVCLs– shown on left side of Figure 88) are the quickest in reaching a 

steady annual cycle. The more impermeable options (cellulose fibres with AVCLs and the 

phenolic foam boards shown on right side of figure) take longer to reach equilibrium. 

Cellulose fibre retrofits without AVCL 

For the cellulose fibre retrofit without AVCL (scenarios 1.1.1 and 1.2.1), Figure 88 shows that 

the relative humidity levels immediately jump by about 10 % and, thereafter, fluctuate an-

nually between 68 to 88 % for scenario 1.1.1 and 75 to 92% for scenario 1.2.1, i.e. respec-

tively for the less and more challenging target U-value scenarios. This jump is associated 

with the immediate drop in temperature of the insulated wall. Additionally, as the cellulose 

fibres are wet applied they contribute a certain amount of moisture to the wall’s overall 

moisture content. However, because the cellulose fibre retrofit is highly permeable, this ini-

tial moisture content diffuses easily out to the room, thereby having little to no impact on 

the wall’s moisture performance long-term. The ease of diffusion allows the vapour pres-

sure at the insulation-masonry interface to remain close to the indoor vapour pressure. The 

relative humidity at the insulation-masonry interface varies seasonally, as indoor environ-

ment changes. However, year-on-year, there is only a small net increase in relative humidi-

ty, which equilibrates in the third simulation year. The fully adhered nature of the insulation 

retrofit ensures that air gaps at the insulation-wall junction and air paths to that area are 

unlikely. As the elimination of air at this junction is a key criterion of the WTA it may give an 

assessor some latitude in deciding whether this is an acceptable insulation strategy or not. 

Figure 89 shows, for the seventh simulation year, the seasonal variation in the relative hu-

midities of the indoor air, of four of the six cellulose fibre retrofit options at the insulation-

masonry interface and of the base wall at the same location. For the cellulose fibre retrofits 

without AVCL (scenarios 1.1.1 and 1.2.1), the humidity fluctuations are obviously more dra-

matic during wintertime, the more the wall is insulated internally. This is almost entirely due 

to the temperature variation at the insulation-masonry interface, compared to the relatively 

stable indoor air temperature. Compensating for these temperature differences, the actual 

moisture contents are quite similar. This means that the liquid water within the wall is able 

to evaporate and then diffuse, with relative ease, through the insulation out into the room, 

similar to the performance of the base wall. Moisture is therefore not accumulating at the 

critical location. This is confirmed by the observation that the oscillations in relative humidi-
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ty at this location, for both the base wall and the wall retrofitted with cellulose fibres with-

out AVCL, closely respond to the internal humidity during summertime, in terms of locations 

of peaks and troughs, when external and internal temperatures are also closest. 

 

Figure 89 Relative humidity of indoor air and at the insulation-masonry interface prior to 

retrofit and with four different cellulose fibre retrofit options installed, for the 

seventh simulation year  

Cellulose fibre retrofits with AVCL 

In Figure 88, the graphs for cellulose fibre retrofits without an AVCL (top left diagram) and 

with AVCLs (top right diagram), show how the addition of AVCLs changes the performance 

considerably. Whereas the relative humidities fluctuate annually between 65 to 95 % when 

no AVCL is used, the lower limit of the annual fluctuations eventually reaches more than 80 

% with an Intello (variable diffusion) membrane (scenarios 1.1.2 and 1.2.2) and more than 

85 % with a PE (fixed diffusion) membrane (scenarios 1.1.3 and 1.2.3). (The graphs for the 

PE membrane retrofits are also shown in Figure 89). 

With regard to the 80 % threshold, whereas the retrofits without AVCL exceeds this thresh-

old only temporarily, those with AVCLs eventually exceed the threshold consistently all year 

round. This means that the AVCL retrofits result in moisture accumulation above the 

threshold long-term. These retrofits, therefore, have the potential to cause moisture-related 

damage over time. It should be noted that the performance of the Intello and PE mem-

branes yield very similar results for this particular case. The variable diffusion characteristics 

of Intello are less advantageous than in lightweight construction, due to the large quantities 

of moisture absorbed by the masonry (requiring a constantly low vapour resistance to ena-
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ble drying towards the room), and the comparatively much weaker reverse diffusion effect 

due to the thermal mass of the substrate. This shows that understanding the physical con-

text is important to benefit from the advantages of variable diffusion membranes. 

Aerogel blanket retrofits 

For the aerogel blanket retrofits (scenarios 2.1.1 and 2.1.2), Figure 88 shows (in the mid-left 

diagram) that the annual oscillation in relative humidity is very similar to those of the cellu-

lose fibre retrofit without AVCL (top left diagram). This is to be expected, as both retrofit 

products are similarly vapour permeable. Again relative humidity fluctuates with the sea-

sonal variations in the indoor environment. Liquid water, moving inward, evaporates within 

the masonry’s pore structure, eventually diffusing through the insulation back into the 

room. Although the 80 % threshold is exceeded by both retrofit options, this only occurs 

temporarily and not for prolonged periods of time. Any moisture accumulating at some 

point in time, dries out again during the annual cycle. The manufacturer has informed the 

authors that this system can be supplied fully bonded to the wall or as a battened system 

(as used here). There are implications for the threshold relative humidity. Fully bonding the 

system would be considered favourably using WTA criteria (see Clarification on 95 % RH 

threshold, Section 3.2.2.1). 

Phenolic foam board retrofit 

For the phenolic foam retrofits, Figure 88 (middle and bottom right diagrams) shows that 

the relative humidities at the insulation-masonry interface rise more slowly and for a longer 

period. This can be said equally of the retrofits with a foil vapour barrier (mid-right diagram, 

scenarios 3.1.2 and 3.2.2) and those without a foil vapour barrier (bottom right diagram; 

scenarios 3.1.1 and 3.2.1). Because phenolic foam is not hygroscopic, it has no initial mois-

ture content when installed. However, at the void-masonry interface, relative humidity in-

creases rapidly over the first six months after installation. From that point onward, there are 

annual humidity fluctuations, due to the wall’s seasonal temperature changes. The overall 

trend, however, is a continual increase in relative humidity. This is because, like with AVCLs, 

the vapour resistance of the phenolic foam inhibits accumulated moisture from evaporating 

and diffusing through the insulation back into the room. 

As already noted, most composite foam insulation boards include foil facings. This is often 

promoted as beneficially increasing vapour resistance. However, the simulations (comparing 

the mid- and bottom right diagrams) show that the retrofits incorporating foil experience a 

higher increase in relative humidity at the critical location, because the ability of moisture to 

evaporate and diffuse through the insulation back into the room is further reduced. (It 

should also be noted that this one-dimensional study does not take account of any two-

dimensional effects of the gaps or joints between the phenolic foam boards.) 
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Calcium silicate board retrofit 

The retrofit with calcium silicate boards (scenario 4.1.1) appears to be the safest of all retro-

fit products assessed, in terms of hygrothermal wall performance. As Figure 88 shows (in 

the bottom left diagram), relative humidity reaches an equilibrium quickly, with annual fluc-

tuations between 70 to 85 %. These fluctuations are similar to those of the aerogel and cel-

lulose retrofits without AVCL (top and mid-left diagrams), except that, for the calcium sili-

cate board retrofit, the maximum relative humidity is lower (below 85 %) than compared to 

those of the aerogel blanket and cellulose fibre retrofits (both between 85 and 90 %). (This 

comparison is based on the graphs for the less challenging target U-value, as this was the 

only target U-value for which the calcium silicate board retrofit was assessed.) The ability of 

calcium silicate boards to easily transport moisture, through capillary action, increases the 

drying potential of the wall to the room and therefore greatly reduces peaks in moisture 

content at the critical location. Finally being a fully bonding system means it meets a WTA 

criterion (see Clarification on 95 % RH threshold, Section 3.2.2.1). 

5.3.4.2 Impact of the external wall layer 

The assessments above show the impacts that different internal wall insulation retrofits can 

have on solid stone wall construction. In those assessments, Stone A was the material of 

both inner and outer stone layers. As the properties of the sandstone of the actual case 

study building are unknown, the question arises to how closely Stone A matches the existing 

stone. As no invasive investigation of the masonry was undertaken in the Historic Scotland 

retrofit project, this question remains highly pertinent and in need of exploration. 

The response to that question in this report was to use bracketing, previously mentioned in 

Section 5.2.3.2. Specifically, simulations of the full range of internal insulation strategies lay-

ered onto the same solid wall were analysed with three different external wall finishes. The 

first finish assessed above is Stone A itself. In the second type of external wall finish, the 

outer portion of Stone A is replaced with the more absorptive Stone B. (For sake of simplici-

ty, Stone A remains in use as the material of the inner stone layer.) The external wall surface 

could also be protected by a rainscreen or a render. Therefore  the third finish selected was 

traditional lime render added to the outside of the outer stone layer, ‘built’ with Stone A. 

The results of the simulations for all 39 assessments (13 retrofit options X 3 different exter-

nal wall layers) are described in Figure 90. As with the diagrams before, the graphs show the 

relative humidities at the insulation-masonry interface. The mid-column, is a repetition of 

the previous assessments of the Stone A wall without a render finish (Section 5.3.4.1), al-

ready shown in Figure 88. The left column in Figure 90 corresponds to Stone B without a 

render finish, the right column to Stone A with an external render. 
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Figure 90 Impact of three different external wall surfaces on the previously modelled 

numerical simulations (Figure 88): relative humidity levels at the condensation 

critical location (insulation-masonry interface), generated with WUFI simula-

tions, for the 13 retrofit options, with external surfaces as follows: exposed 

Stone B (left row of diagrams), exposed Stone A (mid-row) and Stone B with a 

20 mm render lime finish (right row). Results generated with WUFI, using, for 

all simulations, Stone A for the inner stone layer.  
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The graphs in this figure show that a reduced rain water absorption at the external wall sur-

face results in lower relative humidities at the insulation-masonry interface. In all graphs, 

relative humidities shown in the left column (more absorptive Stone B) are higher than 

those in the mid-column (less absorptive Stone A), which, in turn, are higher than in the 

right column (external render). This was to be expected. Comparing the different retrofit 

options, the differences in relative humidity are particularly significant for the more imper-

meable retrofit options, namely the phenolic foam boards (penultimate row in the figure). 

With Stone B, the simulation of the phenolic foam boards predicts relative humidities that 

eventually exceed 95 % RH for the lower U-values, but are unacceptable in all cases When 

the phenolic foam boards are used in conjunction with an external render, the relative hu-

midities at the insulation-masonry interface(ranging between 73 and 84 % RH eventually)  

are significantly lower than that of Stone B, but also significantly lower than that of unren-

dered Stone A (which range between 79 and 92 % RH eventually). This suggests that reduc-

ing driving rain uptake is of benefit to all retrofit scenarios, but especially beneficial for sce-

narios featuring more impermeable layers. This suggests that internal wall insulation sys-

tems with membranes or fossil-based insulants may be better suited to rendered solid stone 

walls than those with exposed stone finishes. Further exploration is required. 

To understand the impact of AVCLs, the simulation of the cellulose fibre retrofits can be 

compared: the results for retrofits without AVCL are shown in the top row of the figure, 

those for retrofits with AVCLs in the second row. Whereas the differences in relative humidi-

ties caused by the external wall layer are minimal in the top row (69 to 96 % RH in the left 

column compared to 66 to 90 % RH in the right column), the differences in second row are 

far more pronounced (eventually 94 to 99 % RH compared to 73 to 87 % RH). This shows 

that cellulose fibre retrofits without an AVCL appear to be sensible regardless of the materi-

al forming the external wall layer, but that the combination of an insulation retrofit featur-

ing an AVCL with a more absorptive external surface can result in significant moisture accu-

mulation (a more accurate term than ‘interstitial condensation’ in this case)  at the insula-

tion-masonry interface. 

Table 20 below shows the judgement of the authors based on their analysis of all retrofit 

scenarios. Besides the graphed outputs from numerical simulation and associated assess-

ments (Section 5.4), this judgement is also based on principles-based assessment (Sanders 

and May, 2014) and an understanding of the issues and risks that are specific to each insula-

tion strategy, as identified in Section 5.3.4.1. The table may be compared to Table 19, which 

shows the results of Glaser method assessments for the same scenarios. 

This can be compared to Table 19, which shows the results of Glaser method assessments 

for the same scenarios. 
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Retrofit 
product 

Target 
U-
value 
W/m²
K 

AVCL Sce-
nario 
ID 

Exposed stone 
% RH after equilibrium: 

average (min-max) 

Rendered stone 
% RH after equilibr.: 
average (min-max) 

Stone A 

exposed 

Stone B ex-

posed 

Judge

ment 

Stone A 

rendered 

Judge-

ment 

cellulose 

fibres, 

sprayed 

0.50 

none 1.1.1 78 (68-88) 83 (70-94) No 76 (66-85) Caution 

Intel-

lo 
1.1.2 84 (80-87) 96 (94-97) No 76 (73-80) Caution 

PE 1.1.3 89 (86-92) 99 (99-99) No 80 (76-83) Caution 

0.25 

none 1.2.1 84 (75-92) 89 (79-96) No 82 (73-90) No 

Intel-

lo 
1.2.2 88 (84-92) 98 (97-98) No 81 (77-85) No 

PE 1.2.3 91 (88-94) 99 (99-99) No 83 (79-87) No 

aerogel 

blankets 

0.50 none 2.1.1 78 (67-88) 84 (68-97) No 76 (65-85) Caution 

0.25 none 2.2.1 85 (74-93) 92 (77-100) No 82 (72-91) No 

phenolic 

foam 

boards 

0.50 
none 3.1.1 82 (79-85) 99 (98-100) No 76 (73-80) Caution 

foil * 3.1.2 89 (88-89) 100 (100-100) No 79 (79-79) No 

0.25 
none 3.2.1 89 (88-91) 100 (100-100) No 82 (81-84) No 

foil * 3.2.2 91 (91-92) 100 (100-100) No 82 (82-82) No 

calcium 

silicate 

boards 

0.50 none 4.1.1 78 (74-82) 85 (81-89) Yes 75 (70-80) Yes 

Table 20 Results of numerical simulation assessments for all retrofit scenarios. Colour 

code for judgement: green (acceptable); yellow (acceptable with caution); or-

ange (not recommended); red (not acceptable). (In actual construction, where 

a foil is used facing a void the effective U-value would be slightly lower than 

that listed, due to reduced radiant heat transfer within the void. This would on-

ly have a minimal effect in the overall hygrothermal performance of the wall, 

and for the sake of simplicity, the U-value is shown unchanged.) 

It should be noted that the insulation systems shown here may perform far better in other 

locations and on other walls with different hygrothermal characteristics. Equally many ex-

cellent insulation systems, for instance fully bonded woodfibre systems, have been excluded 

due to the constraints of a limited study - not due to any perception of unsuitability.  

Assessing against established thresholds 

When using the 80 % threshold as an assessment criterion (i.e. exceeding 80 % RH long-

term), the following can be observed: the median relative humidities of the cellulose fibre 

retrofits without an AVCL (first row of the figure) for a U-value of 0.5 W/m²K fluctuate at 

just above 80 % for Stone B, around 80 % for Stone A and just below 80 % for render. The 
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oscillations above and below this median quickly reach equilibrium. That the troughs fall 

considerably below the 80 % threshold suggests that the insulation-masonry interface dries 

sufficiently over the period of a year to prevent long-term moisture-related fabric deteriora-

tion. (That said, the drying periods are relatively short in the Stone B simulations; further 

investigations would be sensible to establish for how long the 80% threshold is exceeded 

during a year.) 

As already noted, the external wall layer has a significant impact on the cellulose fibre retro-

fits with AVCLs (second row in the figure). For both Stone A and Stone B, the relative humid-

ities for all variants move quickly above the 80 % threshold, albeit this is more exaggerated 

for Stone B. The use of a render appears to make these retrofit options acceptable when 

higher (i.e. poorer) U-values feature. For the scenarios featuring  lower U-values though, the 

threshold is still exceeded. 

The 80 % threshold assessment for the aerogel blanket retrofits (third row in the figure) is 

similar to that of cellulose retrofits without an AVCL (first row), as already discussed above, 

except that the aerogel retrofits show slightly larger fluctuations. 

The impact of the external wall layer on the phenolic foam board retrofits (penultimate row 

in the figure) have already been discussed above. With regard to the 80 % threshold, the 

impact is similar to that of the cellulose fibre retrofits with AVCL (second row). 

One may argue that the WTA’s 95 % RH threshold applies to the calcium silicate board retro-

fit (bottom row in the figure), for Stone A and B given the positive characteristics of its 

chemistry, hygrothermal performance and application method. However given that driving 

rain is not reduced by the wall finish, a cautious approach would propose further research is 

required (see Clarification on 95 % RH threshold, Section 3.2.2.1). However the authors are 

confident that it applies to the third case featuring a render finish as driving rain is indeed 

managed in this case. The Stone B simulation suggests that there is a condensation risk at 

the insulation-masonry interface, which would need consideration in the planning of a ret-

rofit. However, calcium silicate boards, mortar and stone are all products which do not gen-

erally deteriorate when in contact with liquid water (except for freeze-thaw deterioration 

which is not to be expected at that position in a Glasgow wall). That said, the impacts of salt 

migration and the presence of timber embedded into or in contact with the masonry would 

need to be addressed. 

Conclusions from assessment using bracketing 

To summarise the assessment of the three different external wall layers:  
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 General location and exposure, and specifically how an external wall surface imbibes 

moisture during a driving rain event have a significant effect on the vulnerability of 

an internal insulation system; 

 Where external wall surfaces are highly absorptive, conventional insulated plaster-

boards and insulation systems featuring membranes may heighten hygrothermal 

risks. Additionally the voids they leave behind the insulation may provide the mois-

ture and oxygen that mould needs to grow;  

 Where solid walls are exposed brick or stone, moisture managing insulation systems 

(i.e. vapour permeable, hygrosopic and even better capillary active) perform better;  

 Where the impact of driving rain is minimised, the freedom to use a range of differ-

ent insulant strategies grows. Strategies that manage the internal moisture load can 

begin to perform better; 

 Higher (i.e. poorer) U-values are hygrothermally less risky when insulating solid 

walls. A sensible low risk value may be in the range between 0.6 and 0.45 W/m2K, 

but this needs formal assessment;  

 Formal hygrothermal risk assessment including bracketing clearly highlights the po-

tential range of performances possible (of walls made of unmeasured materials) and 

promotes a cautious approach to specification. 

5.3.5 Comparison of Glaser method and numerical simulation assessments 

The base wall and 13 retrofit scenarios were assessed using both the Glaser method 

(BuildDesk U) and numerical simulation (WUFI). The Glaser method assessments predicted 

moisture accumulation (at 100 % RH) in six of the 13 retrofit scenarios after a single year. 

The numerical simulation assessments, however, have shown that this situation occurs in 

none of the retrofits. (That said, in the simulations of the phenolic foam board retrofits 

achieving 0.25 W/(m2
∙K), the relative humidity levels come close to 100 % eventually.) 

The reason why numerical simulation does not predict moisture accumulation at 100 % RH 

is that the simulations include the full range of moisture transport mechanisms and hygric 

functions that porous hygroscopic materials have in reality. These material characteristics 

allow moisture to change state, in response to changing conditions,  and naturally redistrib-

ute away from critical locations, before enough moisture accumulates to reach 100 % RH. 

The fact that Glaser method assessment over-predicts condensation risk is often cited as an 

argument that these assessments are more conservative than numerical simulation assess-

ments. However this case study confirms, to the contrary, why the limitations and scope set 
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out in ISO IS EN 13788:2013 (see Section 4.2.1) should be understood to rule out this meth-

od for hygrothermal risk assessments of hygroscopic solid walls of any kind. The Standard is 

right: the overly broad application of the Glaser method is not. The Glaser method assess-

ments gives an ‘all clear’ to the six mostly impermeable retrofits options, while hygrother-

mal analysis using numerical simulation (under BE EN 15026:2007) of the same retrofits 

predicts year-on-year increases in relative humidity and elevated risk. This demonstrates 

that a hygrothermal assessment using the Glaser method may not only be less risk averse 

than a hygrothermal analysis using numerical simulation, it may be utterly inaccurate. 

The usual 80% threshold that is typically cited for mould growth (Section 3.2.2.1) is exceed-

ed in all of the cases assessed. In the retrofits using vapour open insulation, it is exceeded 

for the coldest months of the year, with more significant drying during summer; whereas for 

those retrofits with vapour resisting insulation or AVCLs, RH is consistently above 80 % RH. 

The impact of elevated relative humidity on potential mould growth will be discussed in 

greater detail in the next section, using a biohygrothermal model. 

5.4 Associated assessments 

5.4.1 Assessment of mould growth risk 

Mould is a health risk to building occupants. Its growth is reliant on the existence of a suita-

ble substrate and specific environmental conditions. (Section 3.2.2.1) The hygrothermal as-

sessment results from numerical simulations can be used to establish the risk and predict 

the patterns of mould growth. Such biohygrothermal assessments can be conducted with 

software, such as WUFI-Bio, a postprocessor for use with WUFI Pro. (Section 5.4.1)  

For the case study, the software WUFI-Bio 3.0 has been used to assess the impact of the 

previously discussed retrofit options with respect to potential mould growth. For this, a bio-

hygrothermal model has been created, based on the data of relative humidity and corre-

sponding temperature. (Section 5.2.2) The assessments of mould growth risk were, howev-

er, only conducted using the data from the numerical assessments of Stone A. (Also using 

the Stone B data was, unfortunately, outside the scope of this report, although higher 

mould growth risks might be expected, given the higher relative humidity levels of the Stone 

B wall at the critical location.) A substrate class II was assumed, suitable for mineral-based 

building materials. (Section 3.2.2.1) 

Based on these inputs, WUFI-Bio assesses when the humidity and temperature conditions 

are sufficient for spore germination and predicts the rate of mould growth at any time after 

that. For the case study, the mould growth risk was determined for each retrofit option in its 

seventh year of installation. These growth rates were assessed using three reference 

thresholds: Pass (< 50 mm/year), Caution (50 to 200 mm/year) and Fail (> 20 mm/year). 
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(Section 4.5) Although the transient biohygrothermal model of WUFI-Bio is designed to be 

used at internal surfaces of the room, it can still be used as a comparative tool to perform a 

conservative risk assessment. In such assessments, a Fail does not mean that actual mould 

growth will necessarily occur, and a Pass indicates that no mould growth is expected. Theo-

retically, the model is only directly applicable to surfaces facing an air space with a certain 

airflow. This can happen in the base wall, where an air space exists between the masonry 

and the plaster-on-laths finish, and in the aerogel blanket and phenolic foam board retrofits, 

both installed with an air space between the masonry and the insulation. In these two retro-

fit cases, avoiding air leakage from the room, by ensuring good airtightness, would be cru-

cial to reduce the risk of mould growth. The cellulose fibre and calcium silicate board retro-

fits should not be at risk of mould growth, if installed properly, due to the absence of air. 

However, for the sake of comparison, they have been included in the WUFI-Bio simulation 

for this case study. The results of the mould growth risk assessment are summarised in Ta-

ble 21. The predicted annual growth rates are also shown in Figure 91. 

Looking first at the threshold assessment in Figure 91, the modelling results show that many 

of the retrofit options are considered at risk of significant mould growth. Regardless of the 

retrofit products, only those scenarios aiming at achieving the less challenging target U-

value, i.e. 0.5 W/(m2
∙K), pass the assessment. All other scenarios achieve either a Caution or 

Fail. None of the scenarios with an AVCL Pass the assessment. Of the scenarios without an 

AVCL aiming at achieving the more challenging target U-value, i.e. 0.25 W/(m2
∙K), the cellu-

lose fibre and aerogel blanket retrofits achieve a Caution, the phenolic foam retrofit fails. 

(The calcium silicate retrofit was not assessed for this target U-value.) 

The results show the importance of understanding how the U-values affect the overall wall 

performance when making retrofit decisions. It is not sufficient to select insulation product 

by their thermal performance only. Instead, all relevant impacts must be assessed. The pro-

posed insulation level, at times, needs to be limited to that level which can be considered as 

safe, i.e. has no detrimental impact on building fabric and occupants’ health. 

In addition to the threshold assessment, a comparison of the predicted annual growth rates 

in Figure 91 show easily that the use of AVCL and foils increases growth rates, with PE mem-

branes having a greater impact than Intello membranes. The use of foils in the phenolic 

foam retrofits results in the highest mould growth rates. The calcium silicate board retrofit 

achieves the lowest growth rate. 

Retrofit product Target 
U-value 

AVCL Scenario 
ID 

Mould growth prediction 
Growth Threshold assessment 

 [W/(K∙m
2
)]   [mm/year]  

no retrofit n/a None B 0 Pass 

cellulose fibres, 0.50 None 1.1.1 30 Pass* 



Historic Environment Scotland Technical Paper 15 

Page 199 of 256 

sprayed Intello 1.1.2 63 Caution* 

PE 1.1.3 304 Fail* 

0.25 

None 1.2.1 136 Caution* 

Intello 1.2.2 233 Fail* 

PE 1.2.3 373 Fail* 

aerogel blankets 
0.50 None 2.1.1 36 Pass 

0.25 None 2.2.1 180 Caution 

phenolic foam 

boards 

0.50 
None 3.1.1 30 Pass 

Foil 3.1.2 425 Fail 

0.25 
None 3.2.1 317 Fail 

Foil 3.2.2 573 Fail 

calcium silicate 

boards 
0.50 None 4.1.1 3 Pass* 

* Mould risk assessment not directly applicable, due to the absence of an air space between mason-

ry and insulation 

Table 21 Assessment of mould growth risk, using biohygrothermal modelling with WUFI-

Bio: the base wall and retrofits options were assessed, using humidity and 

temperature data from the numerical simulations for Stone A and substrate 

class II. 

 

Figure 91 Predicted annual mould growth, using biohygrothermal modelling with WUFI-

Bio for the Stone A solid wall substrate  

When comparing this study with the previous relative humidity-focused study (Section 

5.3.4.1) silicate comes out as the clear winner, followed by cellulose, aerogel quilt and phe-

nolic foam all at 0.5 W/m2K. Phenolic foam is perhaps the most surprising of these, however 

this insulant is not supplied to the market without fibreglass or foil facings as they form part 

of the manufacturing process and are essential to prevent off-gassing throughout its service 

life. The phenolic foam with foil is therefore more relevant – and clearly unacceptable. The 
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only insulants that perform even marginally at the higher insulation level are cellulose and 

aerogel.  This is because their vapour open structure allows hood drying characteristics eve-

ry summer through reverse diffusion. If repeated for the rendered wall they would likely 

score very acceptably from a biohygrothermal perspective. 

As said previously, biohygrothermal modelling is a field of building research that is still in 

development, and more research is needed to refine the accuracy of these models. 

5.4.2 Assessment of freeze-thaw deterioration risk 

When sufficient moisture is present in the near-surface layers of a wall during time periods 

at or below freezing temperature, the volumetric expansion of the freezing water can cause 

the weakening of the material structure. Repeated freezing and thawing actions can thereby 

lead to the deterioration of the material surfaces. These freeze-thaw cycles are often short-

term weather events, which can be assessed with hygrothermal simulation, because of its 

use of hourly data and its capability of modelling liquid transport. WUFI Pro allows the ex-

port of a range of data for any grid element, i.e. monitoring positions, across the cross sec-

tion of the building fabric analysed as well as indoor and outdoor environmental data. The 

data includes temperature, water content, relative humidity, vapour pressure, heat flux and 

rain water. By determining the thickness of a construction layer and the number of grid el-

ements within it, an almost infinite range of outputs can be created. 

The location at risk of freeze-thaw deterioration is the outdoor surface of the wall. In the 

case of a wall with exposed stonework, this location is the near-surface layer of the mason-

ry, consisting of stone bedded in mortar. To determine the freeze-thaw deterioration risk, 

the near-surface layer of the stone will be analysed with hygrothermal numerical simulation. 

For this, two 5 mm thick slivers at the outer part of the wall have been assessed to provide a 

better understanding of the localised water content in these masonry locations. 

Freeze-thaw deterioration is chiefly influenced by moisture content and the number of 

freeze-thaw cycles. As the critical assessment threshold, a free water saturation of 90 % was 

chosen, since this is regarded as a conservative threshold level for brick and natural stone. 

(Section 3.2.2.3) 

The assessment was conducted for the base wall and all retrofit scenarios, using hygrother-

mal data for Stone A. The free water saturation of this stone was assumed to be 210 kg/m3. 

Stone B has not been assessed for freeze-thaw deterioration. 

The moisture content and temperature for the two near-surface slivers of the stone were 

checked for every hour over the whole length of the simulation to assess the number of 

hours that the moisture content was higher than 90 % of free water saturation and, at the 
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same time, temperatures were lower than 0 °C. Over a simulation period of fifteen years, 

i.e. 131,400 hours, not once were these conditions reached, in any of the assessment sce-

narios. This is a positive result, considering that there is less heat to dry out the masonry 

where higher levels of internal insulation are used. 

As with the assessment of mould growth risk, freeze-thaw assessment is a field of building 

physics still under developed, and the results presented here should be interpreted as an 

indicator of potential risk, rather than a conclusive prediction, particularly as the assumed 

material properties of the simulated might not match those of the original and other fac-

tors, such as soluble salt content, cannot yet be simulated hygrothermally using WUFI. 

5.4.3 Assessment of thermal bridging 

The assessments above have focused on the one-dimensional performance aspects of dif-

ferent retrofit options, comparing their impacts on heat and moisture transfer through 

plane building elements. This section illustrates the two-dimensional aspect of thermal 

bridging, using software simulation. 

As an example of thermal bridging, a stone wall below a window will be analysed. This area 

is a recessed window breast, i.e. the wall below the window cill is thinner than the adjacent 

walls. In this location, two linear thermal bridges are essentially close to each other: one is 

the junction between wall and window, with a cill in between; the other is the floor-wall 

junction. Both thermal bridges affect each other. 

Three assessments have been carried out: firstly, the base wall, without any insulation retro-

fit, has been simulated. Secondly, an assessment has been conducted of the same wall ret-

rofitted with internal wall insulation. Lastly, the retrofit has been reassessed, after addition 

of further insulation at locations identified in the second assessment as thermal bridging. 

The assessments have been conducted in accordance with the Conventions for Calculating 

Linear Thermal Transmittance and Temperature Factors (Ward and Sanders, 2007), using 

the software THERM 5.2. The assessments are steady-state simulations, assuming, as per 

the convention, an internal temperature of 20 °C and an external temperature 0 °C. As part 

of the assessment, temperature factors have been calculated, as set out in the convention, 

and assessed against a minimum threshold of 0.75. (Ward, 2006) In accordance with the 

convention, the window itself has not been included in the thermal bridge assessment, as 

the cill-window junction is considered adiabatic, i.e. not transferring heat. The ordinarily 

thick wall is assumed to have a U-value of 2.29 W/(m2
∙K). 

Starting with the assessment of the uninsulated wall, Figure 92 shows a cross section of the 

concerned window breast area. The left illustration in the figure presents the construction 
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details. The middle and right illustrations show respectively the heat flow and temperature 

distributions in this area. 

 

Figure 92 Cross section of a wall with a window breast, generated with THERM: the left 

illustration shows the construction. The middle illustration shows the heat flux, 

which is larger at the window breast (pink), particularly near the window-cill 

junction (white). The right illustration shows the temperature distribution and 

select surface temperatures. The latter relates to the heat flow illustration, 

with 14 °C at an ordinarily thick wall, 10.5 °C at the window breast and only 

10.3 °C at the cill-window junction.  

The middle illustration shows that a larger heat flow occurs at the thinner window breast 

wall (shown in pink) compared to the relatively uniform heat flux elsewhere in the wall 

(red). The largest heat flow, however, occurs at the cill-window junction (white). The heat 

flow through the ordinarily thick wall results in a surface temperature of 14 °C. At the ther-

mally bridged window breast, the surface temperature is considerably lower, just above 10 

°C. This equals a temperature factor of 0.515, well below the 0.75 threshold. If this room 

would be occupied normally, this temperature would pose a risk of surface condensation. 

For the second assessment, 100 mm thick blown cellulose fibre insulation was applied to the 

internal wall surface, achieving a U-value of 0.38 W/(m2
∙K) at the ordinarily thick wall. As in 

the previous figure, Figure 93 shows the construction details in the left illustration, the heat 

flow in the middle illustration and the temperature distribution and select surface tempera-

tures in the right illustration. 

The middle and right illustrations in the figure show that the heat flow has decreased and 

surface temperatures are higher, compared to the uninsulated wall. The colour scheme in 

the middle illustration has shifted from red to orange. The window breast appears to be less 

of a thermal bridge. The cill-window junction, however, remains a thermal bridge of signifi-

cance, albeit with some heat flow reduction. In addition to this, the floor-wall junction has 

now become a thermal bridge: where the floor joists meet the wall, no insulation has been 
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installed. The heat flow at this location, therefore, remains unchanged (red). In the previous 

scenario, this was the ‘standard’ heat flow through the wall. However, now that the insula-

tion has improved this standard, the floor-wall junction has to be considered a thermal 

bridge. In the solid wall below the floor, where heat flow is nearly one-dimensional, the col-

our bands are almost parallel to the surfaces. In the thermally bridged areas, the additional 

heat loss results in cooler temperatures, with temperature bands curving inward toward the 

room. 

 

Figure 93 Cross section of a wall with a window breast, which, in comparison to Figure 

92, is now retrofitted with internal wall insulation: the location of the most sig-

nificant thermal bridge is now the floor-wall junction; the cill-window junction 

remains a thermal bridge also, albeit of lesser significance. Although the sur-

face temperatures have significantly increased, the temperature factor is only 

marginally higher than in the uninsulated scenario.  

Adding cellulose insulation reduced the heat flow through the plane elements of the solid 

wall, resulting in an internal surface temperature of 19 °C, compared to 14 °C when uninsu-

lated. The surface temperatures at the windows breast and cill-window junction have also 

improved, from 10.5 to 13.7 °C and 10.3 to 11.9 °C respectively. However, because of the 

substantial thermal bridging across the building fabric, the temperature factor has only im-

proved marginally, from 0.515 to 0.595. It, thereby, remains well below the recommended 

threshold of 0.75, indicating surface condensation risk. 

This retrofit scenario illustrates that, when internally insulating an existing wall, the original 

fabric received less heat, as is shown in blue colour in the temperature illustration. Care has 

to be taken when planning such retrofits to ensure that the now colder fabric is not in direct 

contact with room air, e.g. where insulation is locally discontinued, in order to avoid surface 

condensation and associated mould growth. This assessment demonstrates that an unsuita-

bly detailed wall retrofit can increase the condensation risk locally. The uninsulated window 

cill, however, remains the most problematic junction in this example, with the lowest sur-
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face temperature. This is an all too common issue with internal insulation retrofits, leading 

to surface discolouration and, eventually, mould growth. 

To avoid the thermal bridging at the cill-window and floor-wall junctions, additional insula-

tion has been added for the third assessment scenario: at the cill-window junction, a thin 

aerogel insulation blanket has been installed below the internal cill board. At the floor-wall 

junction, insulation has been placed in between the floor boards. Figure 94 shows the con-

struction details, together with the heat flow and temperature distributions. 

 

Figure 94 Cross section of a wall with a window breast, which, in comparison to Figure 

93, has received additional insulation at the cill-window and floor-wall junc-

tions: in this advanced retrofit scenario, thermal bridging has reduced signifi-

cantly, surface temperatures have increased, and the temperature factor is 

now above the 0.75 threshold.  

This advanced retrofit scenario has achieved a significant reduction in thermal bridging, with 

only the cill-window remaining in red colour. The surface temperatures at the cill-window 

junction and the window breast have also improved significantly and are now 17.6 and 16.8 

°C. Interestingly, unlike in the other two scenarios, the lowest temperature is now at the 

bottom of the window breast and no longer at the cill. The resulting temperature factor is 

now 0.84, which is above the recommended threshold of 0.75. The construction detailing 

used in this advanced retrofit is therefore sufficient to prevent surface condensation and 

mould growth. 

Planning retrofits so that thermal bridging is minimised, in order to not only reduce heat 

loss but also to eliminate the risk of surface condensation, is often complex, requiring care-

ful detailing, particular at construction junctions. The three assessment scenarios above 

have illustrated how software can be used as an assessment tool to aid the design construc-

tion details. 
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6 Conclusion 

The authors hope that this report about hygrothermal assessment methods and a compara-

tive case study forms a small part in what may be considered a revolution, in both Ireland 

and the UK, in how existing buildings are assessed and understood and, therefore, how they 

can be cared for and retrofitted for future generations and a more sustainable future. 

In Ireland and the UK, construction guidance and practice are still heavily influenced by the 

diffusion paradigm, a reductionist but deeply held view that vapour diffusion is the only rel-

evant moisture transport mechanism in building fabric and the use of a vapour barrier to 

control it is always best practice. It is common to find builders, architects or guidance doc-

uments that express this view even though they may not know or refer to the simplified cal-

culation methods from which this view originated. The first of these methods was designed 

in the 1920s to support assessment of timber frame in America, and a later method, created 

by Dr. Glaser, was created to evaluate freezer compartments in Germany. For many decades 

the latter method has been commonly used, wherever ISO standards are in use, to evaluate 

the hygrothermal risk of all building types, in all exposures. 

The Glaser method is suited for the comparative hygrothermal assessment of lightweight 

building fabric with well-vented rain screens in relatively sheltered conditions, but has little 

place in the evaluation of solid wall traditional buildings, as is clear from the limitations set 

out in the standards associated with it, BS EN ISO 13788:2002 and 2012. The Glaser meth-

od’s simplified, steady-state approach excludes several hygrothermal transport processes 

from consideration, such as liquid transport by capillary action or surface diffusion, and 

short-term weather events such as driving rain and freezing conditions. All of these are of 

particular importance in the hygrothermal assessment of traditional building construction, 

particularly when internally retrofitted with insulation. As this report demonstrates, using 

the Glaser method to assess conditions and building fabric that are outside of the method’s 

scope can generate results that do not resemble and can even contradict the more accurate 

results of numerical simulation, when generated correctly in accordance with BS EN 

15026:2007. 

As all construction systems tend to perform better with an AVCL or vapour tight materials 

(on the room side of an assembly) when assessed using the Glaser method, and as it was the 

only hygrothermal assessment method used (outside of laboratories) for many decades, it is 

not surprising that many manufacturers have developed building products that achieve par-

ticularly good results when assessed with this method. The assessment method which influ-

enced the creation of the systems was then used to test the performance of specified or in-

stalled examples of those systems: a closed loop. It was not until 2007 when an internation-

al standard was published (against which leading hygrothermal numerical simulation soft-

ware programmes could be validated) that a change in practice and paradigm could begin to 
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happen on a large scale. Adoption has been slow in the UK and Ireland. Now in a context of 

national retrofit programmes client bodies need to start insisting on the right risk assess-

ment method, and the construction industry using the right method, for the relevant build-

ing systems and conditions each time. 

The Glaser method is still being taught as an introductory method for all forms of hygro-

thermal assessment in many built environment and engineering colleges, without regard to 

the fact that while it is indeed an excellent, albeit simplified, hygrothermal assessment 

method for some building and component types, it is utterly inappropriate for others. Its 

inappropriate use facilitates and maintains misconceptions.  

Progress is being made. An increasing number of UK universities are researching hygro-

thermal performance, using physical testing and/or numerical simulation software. An in-

creasing number of construction professionals in Ireland and the UK have been trained in its 

use and a limited number of colleges are creating formal academic programmes in hygro-

thermal assessment. While manufacturers of conservation products have been quickest to 

adopt numerical simulation software, many mainstream manufacturers of construction 

products now have personnel using numerical simulation to assess new products. Thus, a 

good basis is being created to allow a shift to occur in how risk assessment of buildings is 

carried out. This is good news, particularly for traditional buildings. 

The case study has demonstrated that moisture transport in solid, unrendered stone walls is 

predominantly in the form of liquid migrating through the materials’ capillaries, due to capil-

lary action and surface diffusion. Vapour diffusion plays a lesser role. The moisture absorp-

tion characteristic of an external wall surface determines the relative importance of the dif-

ferent transport mechanisms. When liquid transport is stopped within the building fabric, 

either by reaching a non-capillary active material or any another form of capillary break, the 

liquid must be able to diffuse and evaporate to the indoor or outdoor environment. Any-

thing impeding this drying of the wall results in moisture accumulation and can lead to 

moisture-related deterioration and potential health risks to occupants. When moisture 

transport in brick or stone-faced solid walls occurs predominantly in the form of liquid 

transport by capillary action and surface diffusion, AVCLs appear to have a poorer perfor-

mance than vapour-open or capillary active insulation retrofits, even where AVCLs are de-

signed to allow variable diffusion. Reducing the absorption characteristics of the outer wall 

surface, e.g. by applying a traditional two coat render, can allow greater freedom to insulate 

or install AVCLs specifically because it reduces the water uptake during a driving rain event. 

The numerical simulations of this case study demonstrate the importance of specific materi-

al properties, such as capillary transport coefficients, vapour diffusion resistance, hygrosco-

picity and porosity. But even with the right assessment standard and validated software 

tools, how are we going to predict the risks of interstitial condensation, mould growth, rot 
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infestation and freeze-thaw deterioration, if the data sets to be used are incomplete or in-

correct? Standards and tools are not enough on their own. Their users must have sufficient 

understanding of building construction and physics, must be well-trained in the software 

tools must select assessment methods adequate to the level of unknowns, and have access 

to sufficiently accurate performance data and, where that is still insufficient, techniques to 

deal with uncertainty. They must also be cautious, always questioning the simulations re-

sults critically. 

In the case study a real, fully measured German sandstone called Baumberger (‘Stone A’) 

was initially assessed hygrothermally, but a ‘bracketing’ approach was then introduced by 

including a rendered version of the same wall and an alternative sandstone (‘Stone B’) to 

see how those material properties changed the outcomes. Without question bracketing 

places an immediate and clear emphasis on the assessor’s judgment and encourages cau-

tion. 

The accuracy of hygrothermal assessments could be improved significantly if better hygro-

thermal material data were available. Laboratory measurement of a carefully chosen selec-

tion of traditional building materials, commonly used in Scotland, could significantly ad-

vance the accuracy of risk assessments. No existing materials from any building in Ireland or 

the UK have yet been subjected to the full range of hygrothermal testing (as far as the au-

thors can establish). Moving forward, it is without doubt a great weakness that the UK 

doesn’t already have a dataset of existing material properties comparable to that of, say, 

Germany, and that an extensive physical testing period didn’t precede the rollout of the 

Green Deal and other ambitious national retrofit programmes. Then again it is better late 

than never: Government action is needed. 

An increasing number of innovative insulation products are being developed specifically for 

use with traditional masonry construction. Interestingly, manufacturers of such specialist 

products tend to have measured the full range of hygrothermal characteristics of their 

products, thereby aiding independent numerical calculation by third parties. The authors 

would advise that all measures which could significantly alter the hygrothermal perfor-

mance of traditional construction, such as use of membranes or insulants, be assessed using 

numerical simulation. Retrofit measures should be low risk for the occupants and the build-

ing itself. As an initial step, clients and professionals embarking on retrofit projects would 

benefit from using the excellent Responsible Retrofit Guidance Wheel of the Sustainable 

Traditional Buildings Alliance (STBA, 2015) and the extensive, peer-reviewed literature re-

source available through it. 
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Figure 95 A graphic representation of a moisture managing internal wall insulation sys-

tem featuring a fully-bonded, hygroscopic and capillary active insulation as-

sembly  

Unlike the Glaser method, numerical simulation (under BS EN 15026:2007) can allow de-

tailed hygrothermal assessment of a wide range of issues, such as rot infestation, mould 

growth and freeze-thaw deterioration. It allows users to assess not only geographic location, 

but also the impact of different orientations, exposures, altitudes and even the radiative ab-

sorptivity of surface colours and night time radiative heat losses. Crucially, it can be used to 

assess short-term climatic events, inside or outside the building, with wind-driven rain being 

a particularly important factor when assessing solid walls. WUFI goes further than the inter-

national standard to also allow assessment of the impact of imperfect construction by allow-

ing one to simulate water penetration on the outer portion of the assembly and varying 

rates of air leakage from the room on the inner portion. Numerical simulation can of course 

be combined with field measurement, for instance water absorption levels (see Appendix 2

 Measuring absorption of masonry walls with Karsten tubes), or measured internal 

and external climate data. As the level of knowledge about the site conditions or desired 

specification grows the accuracy of the inputs and therefore outputs can grow too. 

Thermal bridging, i.e. a non-uniform heat loss through the building fabric over and above 

plane element heat loss, can increase dramatically after an internal insulation retrofit, due 

to discontinuities of insulation. Internal insulation is particularly vulnerable in that these 
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gaps, such as at a window reveal, can result in surface temperatures that are lower than 

they were before the insulation was fitted, increasing the risk of mould. As insulated rooms 

can generally retain a higher temperature for longer, the vapour component in the air can 

also be greater: therefore the potential for greater condensation on colder spots after an ill-

considered internal insulation retrofit is all too likely. In the authors’ view fitting whole 

dwelling ventilation systems when carrying out internal insulation retrofit work is highly ad-

visable: there are many kind of systems – some of which are unobtrusive and robust. 

Insulation retrofit in Ireland and the UK is gathering pace. The retrofit of new materials or 

systems within a traditional building often creates new conditions. Nationwide increasing 

cases of building fabric deterioration are resulting in additional expense and possible health 

risks to building occupant, unless more field research is carried out and the switch to hygro-

thermal analysis using numerical simulation speeds up. National retrofit campaigns, such as 

the UK’s Green Deal and Ireland’s Better Energy Homes Scheme aim at achieving significant 

improvement of the energy efficiency of the existing building stock quickly. These retrofit 

campaigns have provoked a sense of urgency in many quarters about the need to carry out 

knowledge gap studies, significant research and a shift to assessment under BS EN 

15026:2007, but the retrofits themselves are also increasing the complexity of the tradition-

al building stock and due to their lack of focus on the issues raised in this and other similar 

reports must surely be increasing hygrothermal risks, without giving all the promised energy 

savings. 

One-size-fits-all insulation strategies will not work in national retrofit programs. Energy-

related retrofit to traditional, moisture managing construction, carried out without careful 

and appropriate risk assessment, will be neither durable nor sustainable. Continuing to live 

within the diffusion paradigm by accepting unsuitable hygrothermal risk assessment meth-

ods is not in the national interest and should no longer be acceptable. The stakes are too 

high. 
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Appendices 

Appendix 1 Key research works 

Appendix 2 Measuring absorption of masonry walls with Karsten tube 

Appendix 3 Input parameters for the WUFI simulations in the case study 

Appendix 4 Material properties used in the case study 
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Appendix 1 Key research works 

The purpose of this report is to present and compare two alternate hygrothermal assess-

ment methods and the standards that define their use, namely BS EN ISO 13788:2002 and 

BS EN 15026:2007. The case study in Section 5 is intended to help focus attention on these 

methods’ potential impacts on specification and the understanding one gains using them. 

The case study insulation retrofits are based on hygrothermal modelling, not monitoring. 

The authors acknowledge that the assessors’ judgment is critical: the methodology and the 

conclusions of the study rely on a wide variety of reputable sources. Virtually every claim or 

conclusion derived from use of numerical simulation in the case study has antecedents pre-

viously published by respected scientists, in peer-reviewed journals or at conferences. 

Summary of relevant scientific papers 

This section gives a quick overview of a small sampling of papers that touch on issues raised 

in the case study. They are fully referenced in the Bibliography. 

Building physics is at a very exciting stage internationally. Focus has shifted (in the last ten 

years in Central Europe, and more recently in the UK) to retrofit and the issues that are par-

ticular to making traditional buildings energy-efficient. Internationally there are many dedi-

cated international conferences on building physics, building simulation, and now internal 

insulation, besides wider-ranging conferences, such as the annual International Passive 

House and international Passive and Low Energy Architecture (PLEA) Conferences, where 

hygrothermal issues associated with traditional buildings receive more attention. There are 

also more specialist conferences, such as the first ‘Internationaler Innendämmkongress’ (In-

ternational Internal Insulation Congress) held in Dresden in 2011, which go into far greater 

depth. The collected papers of such conferences can become benchmarks for the state of 

the science.  

In recent years Historic Scotland has led the way through commissioning a series of tech-

nical papers and carrying out case studies that explore the knowledge landscape of energy 

efficient retrofit work that is appropriate in terms of hygrothermal building physics and con-

servation. English Heritage is in the process of publishing ten (significantly revised) volumes 

of its Practical Building Conservation series: a remarkable body of work. While all of the 

books in the series address hygrothermal issues related to care and maintenance of historic 

buildings, the (600 page) book titled ‘Building Environment’ deals with building and system 

interactions as well as occupant health and sustainable retrofitting. 

It is important to say a lot of issues are very clear while others are still being explored, but in 

general there is widespread agreement on the characteristics of hygrothermal performance 

in the scientific community internationally. There is a lot of expertise in the UK and much 
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research going on in UK universities. University College London, University of Cardiff, Uni-

versity of Nottingham, Leeds Metropolitan University, Salford University, Napier University 

and Glasgow Caledonian University, to name but a few, are all engaged in exciting hygro-

thermal research to the best knowledge of the authors. That research work, alongside 

equivalent work internationally will, must surely find its way into new official UK guidance, 

but how long will this take? 

It may be that the greatest issue now is the lack of coherence in official guidance - from ad-

vice pamphlets published for homeowners to the technical guidance published for building 

professionals, all the way to national and internationals standards. There is much to be 

done.  

Annex 24 - Heat, air and moisture transfer in highly insulated building enve-

lopes 

Annex 24 was launched in 1990 and made a final report in 1996 (see Section 4.1). What is 

quoted below comes from a Technical Synthesis Report from 2002 writing about the earlier 

work. These conclusions directly support the findings of this technical paper: 

 Airtightness is the most important performance requirement. If not achieved no 

guarantee can be given in relation to thermal performance and durability. 

 A sufficient vapour retarder at the warm side of the thermal insulation is a second 

order requirement. Only in case air-tightness is realised and the indoor climate is ra-

ther severe (ICC3 and ICC4), vapour diffusion may become a real threat in terms of 

unacceptable moisture accumulation by interstitial condensation. 

 In case of built in moisture, a vapour retarder may harm the durability of an envelope 

part. In such cases, the retarder may prevent the part from drying or induce an un-

wanted moisture distribution.” 

(Hens, 2002, p. 9) 

Responsible Retrofit of Traditional Buildings 

Responsible Retrofit of Traditional Buildings (May and Rye, 2012) is a DECC-commissioned 

report by STBA, identifying both existing research and knowledge gaps relating to the retro-

fit of traditional buildings. It provides an exhaustive list of interesting sources of infor-

mation. 
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The report ascertains a lack of understanding of the performance of traditional buildings 

both in industry and in policy. Figure 96, taken from the report, illustrates the scarcity of 

relevant, rigorous research assessing walls for retrofits of traditional buildings. 

 

Figure 96 Extract of the ‘Populated intelligence map’ showing quantity & quality of exist-

ing research for different key topics of relevance to traditional building per-

formance and retrofit. (STBA / Image © Sustainable Traditional Buildings Alli-

ance) 

The report recognises a lack of connection between research, standards, guidance and prac-

tice. Ultimately, it states that a new convention, with a more ample scope than BS 

5250:2011, is required for assessing all the risks posed by moisture to traditional buildings. 

The executive summary clearly identifies areas of required research: 

A considerable programme of research into the following is required: 

 The performance of traditional buildings in terms of energy, heat, 

moisture, overheating, indoor air quality, and comfort. 

 Case studies of retrofit programmes in traditional buildings (both 

technical and user-focused) to further understand rebound effects and 

opportunities for better and more cost-effective retrofit programmes. 

The Green Deal provides an ideal opportunity for large-scale monitor-

ing and feedback at low cost. 

 Data for the material properties of traditional UK building materials 

for use in modelling software. 
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 Better models for traditional buildings including the effects of driven 

rain, location-specific weather data and improved understanding of 

moisture mechanisms. 

 The development of systemic understanding, methodology, and analy-

sis of traditional buildings (as existing and when retrofitted) which in-

corporates the many interactions both within specific elements and at 

a whole house level and includes both technical factors and user be-

haviour. 

(May and Rye, 2012) 

The authors fully agree with these conclusions and see the present work as part of that 

much required body of research. 

The behaviour of water in porous building materials and structures 

The behaviour of water in porous building materials and structures (Pender, 2004) is the title 

of an enlightening paper about the current understanding of moisture behaviour in porous 

materials (such as stone, brick and mortar). Besides a well-informed discussion on the prin-

ciples behind moisture transport and the relevance of building-scale processes, the paper 

states that many insights from excellent research have not yet become part of the common 

understanding in conservation circles, let alone the general construction industry. Further-

more, she acknowledges that critical misconceptions are unfortunately integrated into 

standard advisory practice. Some of these are listed below as they are directly relevant to 

this study: 

 The force that drives water transport in a building component is the vapour pressure 

differential between the exterior and interior of the building. 

 Condensation within the structure occurs only if the air in the pore of the material 

has reached 100 %. 

 There exists a 'zone' of condensation in a wall, determinable by equating increasing 

vapour pressure with decreasing material temperature. 

These misleading simplifications, mostly related to the ‘diffusion paradigm’ (Rose, 2003), 

have led to the misuse of the Glaser method for quite different conditions than originally 

intended. In fact moisture driven by convection is normally far more relevant than vapour 

diffusion, and capillary transfer can be the dominant form of moisture movement in tradi-

tional walls, as determined by the conclusions in Section 6, based in a hygrothermal assess-

ment of the case study in Section 5. 
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WTA Technical Sheet 6-4 

WTA Technical Sheet 6-4 Innendämmung nach WTA I: Planungsleitfaden (WTA, 2009), only 

available in German and French, is a guidance document assessing internal wall insulation 

retrofits and their associated hygrothermal risks. It is published by the WTA, an international 

organisation based in Central Europe, with more than 32 workgroups and 300 active mem-

bers. It has regional groups in Germany, Switzerland, the Netherlands and the Czech Repub-

lic. They represent the very pinnacle of knowledge in building physics, and their focus is on 

promoting the practical application of research, enhancing the actual application of new 

findings and the latest technology. 

This document brings nuanced and detailed insights, backed by robust and up-to-date re-

search, as opposed to simple advices and rules of thumb (predating numerical hygrothermal 

simulation) often found in national standards. It is frequently referred to by the Fraunhofer 

Institute for Building Physics as a state-of-the-art reference source for interpretation of re-

sults from hygrothermal simulations of IWI retrofits. 

WTA Technical Sheet 6-4 states that, when the façade has only a limited protection to rain, 

preserving the drying capacity of the wall is particularly important and therefore in this con-

text vapour permeable build-ups are preferred over vapour tight build-ups. It also states 

that capillary active insulants reduce the risk of moisture accumulation and can theoretically 

be installed without an AVCL, albeit backed up by a hygrothermal risk assessment in every 

case. 

Internal Insulation: Building Physics Aspects, Problems and Limitations 

Worch (2010) is an intriguing paper, the title of which translates as Internal Insulation: Build-

ing Physics Aspects, Problems and Limitations. Worch seems to be in close agreement with 

the tentative conclusions in this study. Despite its many simplifications these authors think 

this study shows results that are of interest, and directly contradictory to the results of the 

Glaser method assessment and the general perception of many in the construction industry 

that AVCLs are always ‘best practice’. It shows how membranes blocking vapour diffusion 

become less appropriate as water uptake from driving rain increases for internally insulated 

solid walls. 

Figure 97, extracted from the mentioned study, is the output from a hygrothermal 

simulation of an existing exposed brick solid wall, internally insulated with mineral wool 

insulation. It portrays the averaged total water content of the build-up as a function of 

insulation thickness, for 3 different levels of rain absorption (0 %, 50 %, 100 %) and the 

presence or absence of an AVCL. 
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Figure 97 Average total water content (from hygrothermal simulation) of an existing ex-

posed brick solid wall internally insulated with mineral wool insulation, as a 

function of insulation thickness (x axis), driving rain absorption (colour code) 

and presence or absence of an AVCL (point shape). (Image © Worch) 

According to these calculations, the AVCL is only advantageous for the case with no 

absorption (0 %) of driving rain. For this case, the main cause of the increase in moisture 

content is interstitial condensation.However, for the cases of 50 % and 100 % rain water 

absorption, the main cause of the increase in moisture content is precisely rain absorption. 

For these cases, the inwards drying capacity is more significant than preventing interstitial 

condensation caused by vapour diffusion. Indeed in these cases installing an AVCL causes an 

increase in water content. The cases with rain absorption also show a more pronounced 

increase in water content with increasing insulation levels. 
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Appendix 2 Measuring absorption of masonry walls with Karsten tubes 

Theory 

The Karsten tube test is a method to measure in situ water absorption rates of a material 

surface. The test is relatively simple, quick, low-cost and non-invasive. This appendix de-

scribes the equipment, the testing method and the evaluation of the results.  

The test is named after its inventor Rudolf Karsten, who first described the test method in 

1963. (Karsten, 2002) The specific methodology recorded by RILEM (Réunion Internationale 

des Laboratoires d’Essais et de recherches sur les Matériaux et les constructions) is known 

as RILEM Test Method II.4. (RILEM TC 25-PEM, 1980; AMT Laboratories, 2006; Saldanha, & 

Eichburg, 2013). Variations or revisions to the method since then are more generally termed 

Karsten tube test methods. Using a tube attached to material surfaces, the test measures 

the rate of liquid absorption of vertical or horizontal surfaces under low pressure. “When a 

water column is applied on a porous material, the water penetrates the material. The water 

volume absorbed after a definite time is a characteristic of the material.” (RILEM TC 25-PEM, 

1980, p. 201) The rate of absorption and the pattern formed are directly related to the na-

ture of the material’s pore structure and its ability to transport liquid by capillary action. 

Equipment 

For the RILEM test method, the tube used for vertical applications is composed of two cylin-

ders at right angles. (Figure 98) The shorter, horizontal cylinder having an internal width of 

2.7 cm and an end surface area of 5.7 cm2. The longer, vertical cylinder is 0.84 cm wide, with 

graduations down its length from 0.0 cm3 to 4.0 cm3, and divided into subgraduations of 0.1 

cm3. The end surface of the horizontal cylinder is applied to the wall surface, using a flexible, 

non-permanent sealant. When filled with water to the 0.0 cm3 line, the pressure applied at 

the centre of the horizontal tube is 961.38 Pa, equivalent to a wind speed of 39.6 m/s or 

142.6 km/h. 

The time required to perform the test can vary depending on the porosity of the material 

tested. Usual test points are 5, 10, 15, 30 minutes and 1 hour. “In situ, one sometimes limits 

the measurements to the three first times … The water pressure decreases in function of its 

absorption by the material. By adding water manually and regularly one can limit the de-

crease of water pressure (maintain the water level ± constant in the tube)”. (ibid., 1980) The 

results “are represented in the form of a water absorption graph (volume absorbed in cubic 

centimetres) in function of time in minutes”. (ibid., 1980) 
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Figure 99 shows such a multi-tube test set-up. Deeply recessed mortar joints, undulating or 

very rough surfaces and surfaces with cracks are hard to test, as achieving a suitably tight 

seal at the surface-tube interface is often impossible. 

 

Figure 98 Karsten tube fitted to the surface of mortar joint in brick masonry  

 

Figure 99 Array of Karsten tubes being filled  
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Procedure for setting up in-situ tests 

To minimise the risk of measuring anomalies, the authors recommend the adoption of a set-

ting-up procedure for the testing:  

 Ensure that the weather is suitable, as rain fall and hot sunshine may have an impact 

on absorption rates 

 Create a standard table on which to record the field test results 

 Record testers, date and location 

 Record the ambient temperature and relative humidity, present at beginning and 

end of the test (It may be of benefit to also record the climatic conditions on the two 

previous days: this can be obtained from the website of the national meteorological 

office.)  

 Walk around the building and select what area of wall is to be measured. Different 

wall finishes or repair work may prompt additional Karsten tube tests. As the tubes 

need to be relatively close to allow tracking of water content and refilling distance 

alone may determine that an additional test is necessary  

 Choose a location for each tube, positioning them so that they can capture the broad 

moisture conditions that the wall is experiencing. The pattern in Figure 98 shows var-

ious joint locations – THJ top of heat joint for instance – that are relevant to brick, 

but can be easily adapted for stone-faced walls. For practical reasons it is advisable 

that no tubes are vertically aligned, as leakage from a tube at a higher location can 

conceal wetting patterns of the tube below.) 

 Get a qualitative sense of the moisture content of the wall through use of a non-

invasive moisture meter (Figure 100). Getting readings across the subject wall in this 

way is a useful survey procedure in its own right (potentially highlighting issues such 

as rising damp) but may also be useful in uncovering an anomaly that could affect 

the water uptake at a Karsten tube 

 Choose locations for the test tube, so that the measurements can reflect the broad 

conditions the wall is experiencing (Figure 101) (Tubes should not be vertically 

aligned, as leakage from one above can conceal wetting patterns of the tube below. 

The pattern in the figure is intended for brick masonry, but can be easily adapted for 

stone walls.)  
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 Affix tubes to the wall (Seals made from Plasticine, polyurethane, butyl rubber or sili-

cone rubber can be used. The seal should be carefully applied with some physical 

pressure. As the sealant compresses, care must be taken that the area of water mak-

ing contact with the surface is not reduced, as this will make the measurement inac-

curate.) 

 Check each tube for leaks, before starting the measurement. (There may be no time 

to reapply a leaking tube at a new location during the test, if the wall is quite absor-

bent.  

 

Figure 100 Karsten tubes, putty and Tramex MRH III moisture meter laid out ready for use.   

 

Figure 101 Positions have been marked on a drawing where tubes are to be installed.  

Duration of measurement 

No reference is made in the RILEM Test Method to the number of tubes required, but, usu-

ally, the mean value of five to ten readings is calculated to gain a good sense of the overall 

performance of an area of wall judged to have a similar character. For painted or rendered 

walls, significant variation in water absorption normally only occurs at an anomaly, and five 

to six tubes are usually considered sufficient. For brick surfaces, ten tubes are normally 

used, as the normal pattern of joints and bricks can lead to significant variance in absorption 
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The authors measure every 5 minutes over an hour (instead of Karsten’s approach of 5, 10, 

15, 30 minutes and 1 hour) for the following reasons: 

 For low absorption surfaces a tube may not need to re-filled for a period as long as 

15 minutes. In this case, a long period of the test could pass when the head of pres-

sure at the face of the horizontal tube is considerably less than 961.38 Pa, thereby 

introducing inaccuracy. 

 Filling all tubes every 5 minutes ensures a longer period of the test for which a pres-

sure close to, or at, 961.38 Pa applies. 

 Recording measurements at regular short intervals ensures that errors are more eas-

ily discovered, both on site and back in the office when evaluating the data.  

 A constant time regime is easier to work with.  
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Testing procedure 

The following is the procedural variation used by the author.  

1. start stop clock 

2. top up tubes to the 0.0 cm3 mark (The tubes should have already been filled suffi-

ciently to test them for leakage.) 

3. refill the tubes, within five minute intervals, every time the water drops to 4.0 cm3, 

recording the amount in a table  

4. stop the clock, when a period is reached, recording timely in the same table the wa-

ter height in each tube  

5. restart stop clock, when filling recommences 

In all cases, the tubes are measured or filled in the same order, e.g. from left to right. By us-

ing the stop clock in the way described above and always filling in the same order, the dura-

tion of water absorption measured is one hour, though the time spent from start to end of 

measurement period is longer. Obtaining consistent, reasonably accurate results for an ab-

sorptive wall would be difficult, if the clock would be kept running. 

Interpretation of the results 

Once complete, the results of the test measurements can be transferred to a spreadsheet 

and presented in the form of a water absorption graph. This shows volume of water ab-

sorbed (in millilitres or cubic centimetres, both units are equivalent) reported as a function 

of time (in minutes). The lines are generally straight, though inaccuracies represented as 

kinks can sometimes be seen. Figure 102 shows this graph for a brick-faced solid wall in Al-

bany Road, Dublin. (Figure 106 shows a photographs of the tubes fitted to the brickwork.) 

From this figure, quite a lot can be learnt about the wall simply by looking at the pattern of 

results for joints and centre of bricks: 

 Are the bricks more or less absorbent than the joints? 

 Could there be an issue with poorly laid head joints, etc.? 

 Crissinger (2005) adds that the test allows one compare results between areas ex-

posed to driving rain and unweathered areas of a wall, as well as to see the impact of 

a water repellent treatment. He states that it has been demonstrated that a solid 

wall could be vulnerable if the average water absorption of exposed areas is approx-
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imately twice that of unweathered areas. In addition, leakage to the inside face of a 

solid wall is more likely to occur during heavy wind-driven rain if a water absorption 

rate of 5 ml or more in less than five minutes has been measured during a Karsten 

tube test. 

 A mean for the overall water absorption of the whole wall can be generated from 

these values in units of kg/m²√s. This result can be compared with values from other 

walls to give an assessor a good sense of how much liquid water the wall imbibes 

during driving rain. The assessor can quickly build up a database of values or share 

with others. This mean absorption value for the whole wall must not be confused 

with the water absorption coefficient or A-value, despite sharing the same units 

(kg/m²√s). The former relates to three-dimensional water absorption from the 

Karsten tubes, while the latter is based on one-dimensional water absorption. 

• However, further software can be used to convert readings from the test into an A-

value (also in units of kg/m²√s). Funcosil Aw-calc (available from Jens Engel at Rem-

mers) solves a cubic equation to convert the three-dimensional water absorption 

measured during the Karsten tube test into an A-value. The resulting value can be 

used in hygrothermal risk assessments, using software compliant with BS EN 15026, 

such as WUFI Pro. 

Figure 102 Absorption progression for each location tested on an exposed brick wall of a 

house in Dublin: The lower two graphs (green) represent measurements made 

directly on brick surfaces, the others were taken from mortar joints.  



Historic Environment Scotland Technical Paper 15 

Page 224 of 256 

The author has carried out thirty absorption tubes tests on different types of wall in Ireland, 

the majority of them in Dublin City. Among these tests, 18 were carried out on brick walls, 8 

on rendered walls, 3 on stone walls and 1 on a concrete wall. The graph in Figure 103 de-

picts the absorption patterns measured for some of these walls. 

 

Figure 103 Absorption of a range of different buildings tested in Dublin: the mean pro-

gression is shown for each wall 

At this stage, four broad categories of absorption have become evident and are listed in Ta-

ble 22: They may act as guide values for readers interpreting their own results. 

Absorption categories Range of water absorption 

when the mean for the 

whole test is calculated 

[ml/h] or [cm³/h] 

Materials 

Non-absorptive 0-1 concrete, rendered and 

stone walls 

Low absorption 1-9 concrete, rendered, stone 

and brick walls 

Medium absorption 9-16 brick-faced walls 

High absorption > 16 brick-faced walls 

Table 22 Range of commonly found values for the water absorption in ml after one hour 
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Absorption patterns observed on previous walls studied 

During tests of porous, hygroscopic materials an absorption pattern beyond the sealant ring 

quickly becomes evident: This indicates areas of greatest absorptivity. (Figure 104) These 

patterns give further information about the permeability of the masonry. (Basham and 

Meredith, 1995) It is important to note this wetting pattern is not a leak: the latter would 

appear at a crack in the surface or dramatically after a breach in the sealing medium has oc-

curred. It would be irregular in shape and downward oriented due to a clear flow of water 

affected by gravity. Firstly, when the brick is porous and fully homogeneous, a wetting pat-

tern can begin as a circular pattern. In some cases, for tubes positioned on the brick itself, 

no wetting patterns can be observed and the volume of water absorbed is lower than the 

water absorbed by the joints. 

 

Figure 104  Circular wetting patterns for the homogeneous surface  

For tubes placed on joints the ideal pattern is shown in Figure 105 where the pattern 

spreads along the line of mortar joints proving that they absorb and transfer more moisture 

than the bricks they bond. This helps to protect the facing bricks or stones from freeze-thaw 

and spalling, and ensures a shorter life for the mortar pointing (which is appropriate). A 

maintenance regime of repointing (with the correct materials) every few decades therefore 

follows from a requirement to protect the brick. 

 

Figure 105  Spread of water along an absorbent joint  

A different pattern may also be found: Figure 106 shows an almost circular pattern with less 

absorption in the joint. This may be evident of too strong a cement mortar or of inappropri-

ate maintenance work where an old lime joint was repointed with cement mortar. The brick 

or stone is now absorbing and transferring more than the joint. The pointing may even be 

blocking moisture stored in the weaker joint behind it. This increased localised water con-
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tent can lead to the old lime joint breaking down behind the cement pointing. All of this can 

result in elevated moisture content in the bricks, especially at the junctions of brick and 

mortar joints, making the outer few millimetres vulnerable to spalling. The outer surface 

such a wall would be especially vulnerable after an inappropriate, moisture blocking, inter-

nal wall installation, as the moisture content of the wall would be greatest and its tempera-

ture lowest in winter, when conditions for freeze thaw are most common. 

 

Figure 106 Specific wetting patterns on joint-brick interfaces can appear, as for the Dol-

phin House’s brick wall  

Unpainted render presents a specific behaviour in terms of water penetration. The spread-

ing of the patterns is quicker at the beginning of the test than at its end. This can be ex-

plained by a saturation of the first millimetres of the render. Their absorption patterns are 

not really defined but will spread in the direction of cracks. Painted render may absorb little 

or nothing during a test. An undercoat and overcoat of paint on render or masonry will be 

capillary closed but should be quite vapour permeable. Repeated coats, especially of syn-

thetic paints, become increasingly vapour impermeable. It is common for paintwork on old-

er buildings, and particularly on garden walls, to blister, due to moisture accumulation. 

 

Figure 107 The water absorption pattern in render is totally different.  
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Appendix 3 Input parameters for the WUFI simulations in the case study 

The following input parameters were used to make the comparative study as transparent 

and replicable as possible. 

1. Simulation period: The simulations were run for 15 years, from 1st October until 30th 

September. 

2. Orientation of building element: The notional elevation, analysed, was facing north-

west, like that of the associated, real building in Glasgow. (see Section 5.2.1.2) 

3. Material properties: Relevant material data is listed in Appendix 4. The rationale behind 

the selection process of material properties is discussed in Section 5.2.3.2. 

4. Material thicknesses: To allow close comparison between the scenario, using exact U-

value, insulation thicknesses were assumed that achieved exact U-values, regardless if 

such thicknesses are commercially available. 

5. Heat resistances: As heat resistance of external and internal surfaces, the software’s de-

fault values of 0.04 and 0.13 m2K/W respectively were used. 

6. Radiation: Absorptivity and emissivity values were both set to 0.9 and the ground reflec-

tivity to 0.2. Further details are given in Figure 108. 

 

Figure 108 Screen shot of WUFI Pro showing the radiation values used in the case study 

simulations  

7. Weather file: A design reference year file was created, using Meteonorm 6.1. The fol-

lowing settings were selected to create the file: default radiation model, 10-year ex-

treme (hour), Perez-tilt radiation model and the latest time periods for temperature and 

radiation. For a seven-year simulation, the same weather file is used seven times. 
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8. Rain load: The rain load was calculated, using the default values for wind-driven rain co-

efficients in WUFI, for the middle part of a buildings of between 10 to 20 m height: R1 = 

0, R2 = 0.1.  

9. Water absorption: The rain water absorption factor was left at the default value of 0.7, 

which means that 70 % of wind-driven rain is available for absorption at the wall surface, 

the rest splashes off immediately. 

10. Indoor moisture: The indoor moisture load is predetermined by BS EN 15026. Initial 

moisture content: The following procedure was used to account for moisture already 

present in the existing wall prior to retrofit and for the moisture introduced into the wall 

by the retrofit measure: The initial hygrothermal conditions of the wall were simulated, 

until a state of equilibrium was reached. The water content profile at this point in time 

was exported, as a spreadsheet. To this were added the thicknesses and construction-

stage moisture values of the retrofit measures. This adjusted profile was then imported 

into the software, as the starting position. (Figure 109) 

 

Figure 109 Screen shot of WUFI Pro showing a profile prepared for a simulation start: The 

graph right of the 0.6 m mark represents the moisture content of the retrofits.  
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Appendix 4 Material properties used in the case study 

The thickness-independent material properties used in the case study assessments are listed 

in Table 23 overleaf. 
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Material Bulk density Porosity* Specific heat 
capacity 

Thermal 
conductivity 

Vapour diffu-
sion resis-
tance factor 

Free water 
saturation  
(100 % RH) 

Liquid trans-
port coeffi-
cient 

 [kg/m3] [m3/m3] [J/(kg∙K)] [W/(K∙m)] [-] [kg/m3] [m2/s] 

Adhesives and plasters        

Adhesive (for CSB†) 1410 MD 0.468 MD 1059 MD 0.6 MD 22.89 MD 280 MD 7 x 10-10 WD 

Gypsum plasterboard 1 700 BS 0.65 WD 1000 BS 0.21 BS 8.3 BS 400 WD 4.5 x 10-6 WD 

Gypsum plasterboard 2 1153 WD 0.52 WD 1200 WD 0.32 WD 16 WD 502 WD 1.1 x 10-9 WD 

Lime plaster (general) 1600 BS 0.3 WD 1000 BS 0.8 BS 10 BS 250 BS 1.5 x 10-7 WD 

Lime plaster (for CSB†) 1600 MD 0.3 MD 850 MD 0.7 MD 7 MD 250 MD 1.5 x 10-7 MD 

AVCLs        

Intello membrane 115 WD 0.086 WD 2500 WD 2.4 WD 26000 WD 85 WD 0 WD 

Polythene membrane 130 WD 0.001 WD 2300 WD 2.3 WD 50000 WD 0 WD 0 WD 

PVC foil facing† 130 BS 0.001 BS 2300 BS 2.3 BS 20000 BS 0 WD 0 WD 

Insulation        

Air 1.23 BS 0.999 BS 1008 BS 0.139§ BS 1 BS 0 BS 0 WD 

Aerogel blanket 146 WD 0.92 WD 1000 WD 0.014 WD 4.7 WD 213 WD 1.3 x 10-11 WD 

Calcium silicate board 222 MD 0.92 MD 1303 MD 0.057 MD 5.4 MD 815 MD 4.9 x 10-6 MD 

Cellulose fibres, blown 50 MD 0.95 MD 2000 MD 0.04 MD 1.8 MD 426 WD 2.3 x 10-7 WD 

Phenolic foam board 43 BS 0.95 WD 1400 BS 0.023 BS 50 BS 400 WD 4.5 x 10-6 WD 

Masonry        

Lime mortar 1785 BS 0.28 WD 1000 BS 0.7 WD 15 WD 247.6 BS 1.63 x 10-6 WD 

Sandstone (silica) 2600 BS 0.23 WD 1000 BS 2.3 BS 30 BS 210 BS 3 x 10-7 WD 

Stone A (Baumberger) 2600 BS 0.23 WD 1000 BS 2.3 BS 30 BS 210 BS 3 x 10-7 WD 

Stone B (Obernkirchner) 2600 BS 0.14 WD 1000 BS 2.3 BS 30 BS 110 BS 2.3 x 10-6 WD 
Data provenance: BS: BS EN 10456 / MD: manufacturer’s data / WD: WUFI data 
* porosity not accounted for in BS EN 13788; used in numerical simulation only 
† Foils are listed as being 1 mm thick for the sake of simulation; the actual sd val-
ues are divided by 0.001 m. 

‡ for use with calcium silicate board (as per manufacturer’s recommendation) 
§ 

for air cavities,
 
thermal conductivity calculated in accordance with BS EN 6946 

to account for convective and radiative heat transfer 
# discontinuity 

Table 23 Thickness-independent material properties 
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Glossary 

λ-value  See Thermal conductivity (λ-value) 

µ-value  See Vapour diffusion resistance factor (µ-value) 

ψ-value  See Linear thermal transmittance (ψ-value) 

Absorption  See Sorption 

Adsorption  See Sorption 

Air and vapour control layer (AVCL)  Membrane or layer of a building component that limits 

air and vapour movement. It must be continuous to be effective. 

Airtightness layer  Layer that prevents convective movement of air under the normal va-

pour pressure differences found in buildings and which may (or may not) also act as a va-

pour control layer. Such layers are sometimes known as ‘convection tight’. 

British thermal unit [Btu]  Non-metric, non-SI unit that describes the amount of energy 

needed to cool or heat one pound of water by one degree Fahrenheit. 1 Btu = 1.05 kJ (ki-

lojoule) 

Building component  Each building component has a specific assembly of building materials, 

with specific properties and performances. It may be pre-fabricated or erected on site at 

one time or, in the case of retrofit, over many years. See Building element 

Building element  The building fabric is broken down into building elements, such as floors, 

walls and roof. At times, a building element may be a building competent; in other cases, 

the element may be made up of many component parts. See Building fabric and building 

component 

Building fabric  The sum of the structural, fixed materials of which the building is made. This 

contrasts with furnishings which are loose. See Building element and thermal envelope 

Capillary action  The movement of a liquid in narrow spaces, either small tubes or porous 

materials, due to intermolecular forces between the liquid molecules and the surrounding 

surfaces. If the diameter of the tube is sufficiently small, the combination of surface tension 

and adhesion to the surface acts to draw the liquid along the tube. This is also referred to as 

‘wicking’. 

Capillary active material  Material with a pore size and structure sufficient to induce liquid 

movement by capillary action. 
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Capillary break  Interface between a capillary active material and a non-capillary active ma-

terial. This interface may also be at the surface of the capillary active material, i.e. interface 

between the material and air. 

Condensation  Process by which water is deposited from air containing water vapour when 

its temperature drops to or below dewpoint, or the vapour pressure rises above the satu-

rated vapour pressure at a given temperature. Interstitial condensation occurs within layers 

of the building envelope and Surface condensation is on visible surfaces within the building. 

Conduction, Thermal conduction  Transfer of heat between stationary molecules; it is the 

primary mode of heat transfer in solids. 

Conservation of energy  States that the total energy of a closed system remains constant – 

it is conserved over time: it can only be transformed from one energy state to another. 

Convection, Thermal convection  Transfer of heat by a combination of advection (the 

movement of molecules from one location to another) and conduction. This is the primary 

mode of heat transfer in free-flowing liquids and gases. For movement of moisture by con-

vection, see Moisture convection 

Dalton’s Law  See Law of Partial Pressures 

Density  Mass per unit volume of a material, typically expressed in kilograms per cubic me-

tre [kg/m3] 

Design Reference Year  Climatic data for a whole year, assembled from data recorded dur-

ing a number of years, to be used for design purposes. A Design Reference Year tends to 

represent extreme conditions to allow for risk, whereas a Test Reference Year represents 

averaged conditions. 

Desorption See Sorption 

Dewpoint, dewpoint temperature  Dewpoint is the temperature to which a given parcel of 

humid air must be cooled, at constant barometric pressure, for water vapour to condense 

into water. The condensed water is called dew. The dewpoint is a saturation temperature. 

Differential equation  Mathematical equation for an unknown function of one or several 

variables that relates the values of the function itself and its derivatives of various orders. 

Diffusion paradigm  The diffusion paradigm is that version of building physics which ex-

plains hygrothermal performance of building envelopes in terms of water vapour diffusion, 

which uses the steady-state profile method and leads to recommendations in the USA for 

http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Air
http://en.wikipedia.org/wiki/Barometric_pressure
http://en.wikipedia.org/wiki/Water_vapor
http://en.wikipedia.org/wiki/Condensation
http://en.wikipedia.org/wiki/Dew
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Equation
http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Variable_%28mathematics%29
http://en.wikipedia.org/wiki/Derivative
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vapour barriers and attic ventilation. It is the predisposition toward prescriptive guidance 

inhibited the development of an engineering approach. 

Driving force, Driving potential  A differential within a system which forces the movement 

of mass or energy to allow the system to reach equilibrium. Example: a temperature differ-

ential is the driving potential which forces heat from warm areas to cold areas to establish a 

uniform temperature 

Gaseous state  State of matter distinguished from the solid and liquid states by: relatively 

low density and viscosity; relatively great expansion and contraction with changes in pres-

sure and temperature; the ability to diffuse readily; and the spontaneous tendency to be-

come distributed uniformly throughout any container 

Glaser method  Well-established method of assessing hygrothermal performance under BS 

EN ISO 13788. See also Numerical simulation assessment 

Heat  Transfer of energy from a hotter to colder body other than by work or transfer of mat-

ter, often expressed in joules (J). The total heat in a system can be expressed as the sum of 

latent heat and sensible heat. See also Heat movement 

Heat transfer See power  

Hygroscopicity, Hygroscopic material  The ability of a material to take in moisture from the 

surrounding environment by either absorption or adsorption, and to hold it within its mo-

lecular structure. As moisture accumulates, the physical properties of a material change (for 

example, materials may swell or become sticky), but are returned to their original state 

when the moisture is released. See also Non-hygroscopic material 

Hygrothermal performance It can be assessed using, for example, the Glaser method as-

sessment or numerical simulation assessment. These methods assess heat and moisture 

transfer through a building component under a range of boundary conditions 

Hysteresis The manner in which the equilibrium moisture content of a porous material for a 

given RH may differ depending on whether it is reached during wetting or drying. This can 

be due to a number of reasons, such as water caught behind a narrow pore passage or the 

different contact angles between water and pore wall during wetting and drying. 

Isopleth  Contour line (often used in geography) joining points having the same value of 

some quantity. In the context of mould risk assessment, isopleths can be used to describe 

mould growth conditions independent of temperature and relative humidity levels 

Joule [J]  SI unit, describing the measure of energy used or work done in applying a force of 

one newton through a distance of one metre 

http://en.wikipedia.org/wiki/Force
http://en.wikipedia.org/wiki/Newton_%28unit%29
http://en.wikipedia.org/wiki/Metre
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Latent heat The quantity of heat absorbed or released by a substance undergoing a change 

of state, such as ice changing to water or water to steam, at constant temperature and pres-

sure. See also Sensible heat 

Law of Partial Pressures  A scientific principle which states that in a gas mixture (such as air) 

the partial pressures of each component are independent of each other and that the total 

pressure equals the sum of the partial vapour pressures. This is also called Dalton’s Law of 

Partial Pressures.  

Linear thermal transmittance (ψ-value)  Linear thermal transmittance is the measure of the 

additional heat loss, or thermal bridging, that occurs at component junctions, over and 

above the plane element heat losses. It is measured in W/(m∙K). See also Thermal transmit-

tance (U-value) 

Liquid water  See Moisture 

Moisture  Water in its solid, liquid or gaseous/vapour states. See also Moisture content, 

Moisture convection and Moisture movement 

Moisture content  Mass of water (in any state) per unit volume of a material, often ex-

pressed in kilograms of water per cubic metre (kg/m3) 

Moisture convection  Movement of water vapour through a space via air currents or bulk 

air movement (as opposed to by diffusion). For thermal convection, see Convection 

Moisture diffusivity (Dw)  This describes the capillary transport of moisture in the liquid 

phase, which is the predominant moisture transport mechanism in capillary porous materi-

als. In the context of building physics it is sufficiently accurate to regard the liquid transport 

in the pore spaces as a diffusion phenomenon (although it is basically a convective phenom-

enon). WUFI measures it through two liquid transport that depend on both material proper-

ties and boundary conditions (see Wetting diffusivity and Drying diffusivity). 

Wetting diffusivity (Dws)  This is defined in WUFI as the liquid transport coefficient for suc-

tion, measured in units of square metre per second (m2/s). It describes the capillary uptake 

of water when the imbibing surface is fully wetted. In the context of building physics this 

describes rain on a façade or an imbibition experiment. The suction transport is dominated 

by the larger capillaries, since their lower capillary tension is more than compensated by 

their markedly lower flow resistance. 

Drying diffusivity (Dww)  This is defined in WUFI as the liquid transport coefficient for redis-

tribution, measured in units of square metre per second (m2/s). It describes the spreading of 

the imbibed water when the wetting is finished, no new water is taken up anymore and the 
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water present in the material begins to redistribute. In a building component, this corre-

sponds to the moisture migration in the absence of rain. The redistribution is dominated by 

the smaller capillaries since their higher capillary tension draws the water out of the larger 

capillaries. See also Moisture and Moisture movement. 

Moisture movement, Moisture transfer  Mode of transfer is very dependent on the state 

the moisture is in. Water can exist in the same material as a solid, a liquid and a gas in all 

three states simultaneously and can change state as conditions change. This is well ex-

plained in Section 3.2 of this paper. See also Moisture 

Moisture storage function  Property of a hygroscopic material which serves as the regulator 

for how much liquid water it can store: for each relative humidity a different water content 

will be present. This can be tabulated for each material.  

Non-hygroscopic material  Material which lacks the ability to take in moisture below satura-

tion vapour pressure. Moisture accumulation in a non-hygroscopic material results in a liquid 

water build-up on the surfaces of the material, which can lead to permanent damage if the 

quantity of water exceeds certain thresholds (e.g. slumping mineral wool becoming com-

pressed). See also Hygroscopicity 

Numerical Simulation  This is the prediction of transient heat and moisture transfer in mul-

ti-layer building envelope components, subjected to non-steady-state climate conditions on 

either side.  The software solves transient differential equations for each cell of a model re-

peatedly to do this.  BS EN 15026 is the relevant standard. See also Glaser method assess-

ment 

Partial pressure  See Law of Partial Pressures 

Plane element  Component of a building with defined two-dimensional surfaces, such as 

walls, roofs, windows. Plane element heat flow (termed thermal transmittance, or U-value) 

is considered uniform across its extent allowing for any repeat thermal bridges within it. 

Linear thermal bridging (termed linear thermal transmittance, or ψ-value) occurs at junction 

of plane elements. 

Porosity  Fraction of airspace within a material, often expressed as cubic metres of air per 

cubic metre of material (m3/m3) or a percentage of the total volume which is composed of 

air. 

Power  Rate at which work is done or energy is transferred, often expressed in watts (W). 

One watt corresponds to rate of one joule per second (1 W = 1 J/s) 
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Radiation  Transfer of heat by electromagnetic waves emitted from or absorbed by a sur-

face. It one of three heat transfer modes convection and conduction. 

Relative humidity (RH)  Measure of vapour within a space relative to its saturation point at 

the same temperature, strictly defined as the fraction of the partial vapour pressure over 

the saturation vapour pressure at the same temperature. 

Reverse diffusion  This refers to the movement of vapour molecules in capillaries within the 

component towards the interior of the building, due to higher temperatures on the outside 

surface of the wall. 

Saturated air  Air in which the water vapour has reached its saturation vapour pressure. This 

state corresponds to 100 % relative humidity and the temperature corresponds to the dew-

point temperature. 

Saturation vapour pressure  The maximum vapour pressure (i.e. maximum amount of va-

pour) possible in air at a specific temperature. 

Sensible heat  is heat exchanged by a body or thermodynamic system that has as its sole 

effect a change of temperature. The term is used in contrast to latent heat, which is the 

amount of heat exchanged that is hidden, meaning it occurs without change of tempera-

ture. 

Solid water  See Moisture 

Sorption  The process in which a material takes up a liquid or vapour, usually moisture. 

Sorption is a combined term that includes both absorption and adsorption: whilst spelt simi-

larly these are very different.  In the context of a porous material, absorption is the uptake 

of moisture from the environment into the volume of the  solid material, combining with its 

molecular structure. Adsorption is the adhesion of a very thin layer of liquid to the surface 

of the pore wall, drawn by molecular forces. Desorption (the opposite of sorption) refers to 

the release of moisture from the porous material, and is often caused by a rise of tempera-

ture. 

Specific heat capacity  Material property used to describe the amount of thermal energy 

required to change the temperature of a unit mass of material, often expressed as the num-

ber of joules required to change one kilogram of material by one kelvin [J/(kg∙K)]. 

Steady-state  State where conditions are assumed to be constant, i.e. not changing over 

time. Steady-state calculations do not take account of changes over time: they analyse a 

system under fixed conditions. On the other hand, transient calculations take account of 

changes in the system over time, such as oscillations in temperature. See also Transient 



Historic Environment Scotland Technical Paper 15 

Page 237 of 256 

Surface diffusion  Where vapour is pulled to the surface of pores of hygroscopic materials 

by adhesion and then cohesion forces causing it to condense and line the surface as a film of 

water to. 

Temperature  Temperature is not heat, it is the degree of 'hotness' of a body. More precise-

ly, it is the potential for heat transfer. 

Temperature differential  The difference in temperature between two objects or areas. 

Temperature factor (fRsi)  Ratio of the temperatures used to assess the risk of surface con-

densation, or mould growth, near a thermal bridge. It represents the coldest internal sur-

face temperature relative to the temperature difference between inside and outside. 

Temperature profile  Visual representation of the temperature at every point through a 

cross section of a material. 

Thermal bridge  Part of a structure of lower thermal resistance which bridges adjacent parts 

of higher thermal resistance and which can result in localised cold surfaces on which con-

densation, mould growth and or pattern staining can occur. Source: BS 5250 Control of 

Moisture in Buildings.  See plane element and linear thermal transmittance  

Thermal bypass  Heat transfer that bypasses the conductive or conductive-radiative heat 

transfer between two regions. It may well be a major contributor to the performance gap 

that appears to exist between predicted and actual thermal performance. Bypass mecha-

nisms include air leakage, thermal looping, wind washing etc. 

Thermal conductivity (λ-value)  A material property describing the rate at which heat is 

transferred through a length of material at a specific temperature differential. It is frequent-

ly expressed as the number of watts transferred across one metre of material at a tempera-

ture differential of one kelvin (W/mK). 

Thermal convection  See Convection 

Thermal envelope Part of the building fabric which separates the indoor climate from out-

doors.  

Thermal transmittance (U-value)  A value to describe the steady-state heat transfer through 

plane elements in a building, which is dependent on conductivity of each material and the 

thickness of each layer within the component. Empirical relationships have been developed 

to incorporate radiation and convective heat transfer at the surfaces of the component. 

Thermal transmittance is often expressed in units of watts transferred per square metre of 

plane surface area per kelvin of temperature difference (W/m2K). See also Linear thermal 

transmittance 
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Thermodynamic temperature  Measure of the average energy of all of the vibrational, rota-

tional and translational motions of the molecules, atoms and sub-atomic particles of a body 

Traditional buildings  Buildings constructed with natural materials that tend to be moisture 

managing and are often vapour permeable, hygroscopic and capillary open. Examples of 

traditional building materials include clay bricks, stones, timber and lime plasters and mor-

tars. Construction methods tend to focus on managing moisture and throw off rain rather 

than blocking and sealing. 

Transient  A state where conditions and the response of the system to the conditions are 

assumed to change over time. See also Steady-state 

U-value  See Thermal transmittance 

Vapour diffusion  The movement of vapour molecules in capillaries within a component, in 

an attempt to equally distribute themselves and reach equilibrium. It always occurs in the 

direction of high vapour pressure to low vapour pressure. See also Surface Diffusion, Vapour 

diffusion resistance factor (µ-value) and Vapour movement 

Vapour diffusion resistance factor (µ-value)  Material property describing the rate of va-

pour diffusion in a material as compared to still air: By definition, still air has a µ-value of 1; 

all other materials have a µ-value greater than 1. See also Vapour diffusion 

Vapour movement  See Vapour diffusion and Surface Diffusion 

Vapour pressure  This is part of the atmospheric pressure due to water vapour present in 

the air. Vapour pressure is measured in kPa, with 1kPa = 10 mbar = 1000 N/m². 

Vapour-open / vapour-closed  Qualitative description of how easily vapour can diffuse 

through a material. Vapour-open materials, such as mineral wool or wood fibre, have low µ-

values and allow vapour diffusion to occur relatively easily. Vapour-closed materials, such as 

a PE-membrane or foil layer, have high a vapour diffusions resistance factor (µ-value), which 

greatly restricts vapour diffusion.  

Vapour transfer  See Vapour diffusion and Surface Diffusion 

Water vapour  See Moisture  
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